The “wisdom of elders”: Post menopausal matriarchs lead Orca resident pods, study finds

Call it “the wisdom of elders.”

A new study concludes that British Columbia’s southern resident Orca pod is led by “post reproductively aged” females who help it survive during lean years.

According to the study, the older females serve as key leaders, directing younger members of the pod, and especially their own sons, to the best spots for landing tasty meals of salmon, helping their kin to survive. This leadership role takes on special significance in difficult years when salmon are harder to come by.

The researchers say the discovery offers the first evidence that a benefit of prolonged life after reproduction is that post-reproductive individuals act as repositories of ecological knowledge.

There are only three species on Earth where females go through menopause, human beings, killer whales and pilot whales.

Orca feeding chart
Older females lead Orca pods in hard times. (Current Biology)

“Menopause is one of nature’s great mysteries,” says Lauren Brent of the University of Exeter in the United Kingdom. “Our study is the first to demonstrate that the value gained from the wisdom of elders may be one reason female killer whales continue to live long after they have stopped reproducing.”

The scientists say in their paper this also provides insights into why human women continue to live long after they can no longer have children.

The study  is in Current Biology “Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales” by Lauren J.N. Brent, Daniel W. Franks, Emma A. Foster, Kenneth C. Balcomb, Michael A. Cant and Darren P. Croft, says:

Leadership by these females is especially prominent in difficult years when salmon abundance is low.

Female killer whales typically become mothers between the ages of 12 and 40, but they can live for more than 90 years. By comparison, male Orcas rarely make it past 50.

Resident pods feed mostly on Chinook salmon.  Chinook make up than 90 per cent of their diet during the summer.  The abundance of salmon fluctuates due to fishing by humans and weather changes such as El Nino and climate change. The study says that individual killer whales with information on where and when to find salmon provide other group members with considerable benefits.

To find out who were the leaders of the Southern Resident pod, the team analyzed 751 hours of video footage taken over 35 years of as many as 102 Southern resident killer whales in the coastal waters of British Columbia and Washington engaged in directional travel , collected during nine summer salmon migrations. The scientists also used multigenerational demographic records have been recorded for the Southern resident killer whales since 1976, allowing them to know the family relationships of the Orcas.

 

orcas
A killer whale pod swims in tight configuration.
(David Ellifrit, Center for Whale Research)

The study found that in any given year,  adult females were more likely to lead  the  pod’s group movement compared to adult males  They concluded that Orca matriarchs over the age of 35 years “the mean age at last reproduction for Southern resident females that lived past the age of peak adult female mortality” were more likely to lead the pod “compared to reproductively aged females.”

The scientists then compared fisheries data on Chinook salmon abundance to whale behavior. It showed that “post-reproductively aged females were more likely to lead group movement in years when salmon abundance was low.”

The scientists concluded that shows that prolonged life after the reproductive years allows the “individuals act as repositories of ecological knowledge.”

In the case of Orcas, the post menopausal matriarchs “lead group movement in and around salmon foraging grounds, and this is exaggerated when salmon are in low supply and the selective pressure to locate food is at its highest.”

The researchers also found that females are more likely to lead their sons compared to their daughters.

Daniel Franks of the University of York explained: “Killer whale mothers direct more help toward sons than daughters because sons offer greater potential benefits for her to pass on her genes. Sons have higher reproductive potential and they mate outside the group, thus their offspring are born into another group and do not compete for resources within the mother’s matriline. Consistent with this, we find that males follow their mothers more closely than daughters.”

So how does the study of Orca elders apply to human beings?

“In humans, it has been suggested that menopause is simply an artefact of modern medicine and improved living conditions,” said Darren Croft of the University of Exeter. “However, mounting evidence suggests that menopause in humans is adaptive. In hunter-gatherers, one way that menopausal women help their relatives, and thus increase the transmission of their own genes, is by sharing food. Menopausal women may have also shared another key commodity – information.”

Recent studies show that living beyond the age of 60 is much more comon in hunter-gatherer cultures than previsouly believed.

So the study concludes that in humans:

In hunter-gatherers, one way that menopausal women help their relatives, and thus improve their own inclusive fitness, is by sharing food.

Menopausal women may also share another key commodity—information. Humans were preliterate for almost the entirety of our evolutionary history and information was necessarily stored in individuals. The oldest and most experienced individuals were those most likely to know where and when to find food, particularly during dangerous and infrequent conditions such as drought.

As for Orcas:

Wild resident killer whales do not have the benefits of medical care, but, similar to humans, females can live for more than 40 years after they have ceased reproducing.  An individual resident killer whale’s ability to find salmon is crucial to their fitness; in years with low salmon abundance, resident killer whales are more likely to die and less likely to reproduce.

Our finding that postreproductively aged female killer whales are especially likely to lead group movement in years with low salmon abundance suggests that the ecological knowledge of elders helps explain why females of this species live long after they have stopped reproducing. Postreproductive female killer whales may provide other knowledge to their relatives. For example, postreproductive members of this socially complex species may have greater social knowledge that could help kin navigate social interactions.

In some other species, like African elephants, survival is enhanced in the presence of older female relatives, who are more capable of assessing social and predatory threats.

So the study asks “why is menopause restricted to some toothed whales and humans?”

The scientists believe that for evolution, menopause will only evolve when the benefits for the species outweigh the costs of terminating reproduction.

In humans, resident killer whales, and short-finned pilot whales,  when a female  usually stays in the immediate location of her family, that means that  the benefits she can gain through helping her relatives, increases with age.

Among Southern resident Orcas, neither sex leaves the family pod and “females are born into groups with their mothers and older siblings.”

As the female resident Orca ages, her older relatives who die are replaced by “her own nondispersing sons and daughters.” In ancestral humans, resident killer whales and short-finned pilot whales, the benefits of the elders helping therefore increase with age, which is thought to predispose these three species to menopause

The study notes that Orcas have a number of different “ecotypes” or cultures “which differ in their prey specialization, morphology, and behavior, and which in some cases represent genetically distinct populations.” That means “that not all ecotypes are characterized by the same social structure as resident killer whales” where females leave their birth pod. The say more study is needed to find out if menopause occurs in those Orca pods and what the role of older females is in those pods. The study also did not look at the northern residents who frequently visit Douglas Channel.

Orcas’ genetic diversity low after Ice Age population “severe reduction”, study finds

Orca
An Orca off Vancouver Island (Robin Rowland/Northwest Coast Energy News)

The worldwide population of Orcas probably crashed during the last Ice Age, creating a “bottleneck” in the genetic diversity of the species around the world, a problem that could continue to affect killer whales today, according to a new genetic study published on February 4,2014.

Rus Hoelzel from the School of Biological and Biomedical Sciences, at Durham University, in the UK and colleagues used DNA sequencing from archive material from earlier studies, or from museum specimens to track the evolution of the Orcas.

One group of Orcas that lives off South Africa are an exception, with greater genetic diversity than others, the new study has revealed.

“Killer whales have a broad world-wide distribution, rivaling that of humans. At the same time, they have very low levels of genetic diversity,” Hoelzel said.

“Our data suggest that a severe reduction in population size during the coldest period of the last ice age could help explain this low diversity, and that it could have been an event affecting populations around the world.

The Orca population along the Northwest Pacific Coast has the same low genetic diversity as in other areas, the study showed.

The killer whale is as a top predator, feeding on everything from seals to sharks. That means from the top of the food chain, the Orca also serves as a sentinel species for past and future ocean ecosystems and environmental change.

In the study published in the journal Molecular Biology and Evolution, Hoelzel and his colleagues assembled 2.23 gigabytes of Northern Hemisphere killer whale genomic data and mitochondrial DNA (mtDNA) from 616 samples worldwide.

The scientists concluded that killer whales were stable in population size during most of the Pleistocene (2.5 million – 11,000 years ago) followed by a rapid decline and bottleneck during the last great period of the Ice Age (110,000-12,000 years ago).

“Our data supports the idea of a population bottleneck affecting killer whales over a wide geographic range and leading to the loss of diversity,” Hoelzel said. “The South African population stands out as an exception, which may be due to local conditions that were productive and stable over the last million years or so.”

They are pointing to the “Benguela upwelling” ocean system which delivers nutrient rich cold water to the oceans off South Africa. The Benguela system remained stable despite the last glacial period and the nutrient rich water would have been able to sustain the supplies of fish and dolphins that killer whales in this part of the world feed on.

The scientists believe that other major upwelling systems around the world – the California current off North America; Humboldt off South America; and the Canary current off the coast of North Africa – were either disrupted or collapsed altogether during the last glacial or Pleistocene periods. This could potentially have reduced the food supply to killer whales in these areas, leading to the fall in their numbers.

While it was likely that other factors affecting killer whale populations were “overlapping and complex”, the scientists ruled out hunting as an effect on the bottleneck in populations. Hunting by early man could not have happened on a sufficient enough scale to promote the global decline in killer whale numbers.

In an e-mail to Northwest Coast Energy News, Hoelzel said that the team sequenced the DNA from a male killer whale from the Southeast Alaska resident community. “This genome revealed the same pattern of historical population dynamics as we found for a whale from the North Atlantic, suggesting shared history across a very broad geographic range, and a shared population bottleneck around the time of the last glacial maximum,” Hoelzel said.

The scientists say looking at the genetic diversity of the ocean’s other top predators, such as sharks, might potentially suggest a negative impact on their numbers too during the Ice Age.

As pods recover from whaling, more whales come back to Douglas Channel, researcher believes

 

Fin whale
Fin whale in Squally Channel (Courtesy Chris Picard)

Whales are coming back to Douglas Channel.

In 2013, many Kitimat residents with long experience on the water have reported and are still reporting more sightings of both orcas and humpback whales.

Add to this a recently published scientific study that shows the number of humpbacks at the mouth of the channel near Gil Island has doubled in the past decade, with the study saying there were 137 identifiable whales in 2011.

So why are the whales returning? Chris Picard, Science Director for the Gitga’at First Nation and one of the co-authors of the study believes that answer is simple. There are, so far, three species of whales seen in the area, humpbacks, orcas and fin whales. It is only now, Picard believes, that the humpback and fin whale populations are recovering from a century of whaling.

The study estimates there were once about 15,000 humpback whales in the North Pacific when whalers began hunting the animals. That number was down to 1,400 when whale hunting was stopped in Canada in 1966.

As whale numbers increase, they are searching for the rich food sources found in the Channel, both at the mouth around near Gil Island where the study took place and as far north as the Kildala Arm and Clio Bay.

“One of the things the humpbacks like to do when they are on our coast or the Alaskan coast and that is they feed,” Picard said, “So they are really targeting areas that there is a high density of their preferred prey, krill or herring or other schooling fish, sardines in some years.”

So far the study has concentrated in Gitga’at traditional territory around the mouth of Douglas Channel near Gil Island. Picard says increasing the study area to include more of Douglas Channel is a good idea, but would require more resources than are currently available. “We’d like to continue with the study consistent with the work that we have been doing. Considering what we’re seeing in the local Douglas Channel area, Wright Sound, Gil Island, it can be very worthwhile.

“We are going to continue with our current study which involve getting to know how many humpbacks are using the area and continue with the study that we just published to see if numbers continue to increase or to see whether or if they do start to stabilize at some number,” Picard said. “With more and more proposals for increased shipping, we get to see any changes with humpback numbers that may be linked to increased shipping. We’ll continue to monitor the humpback population; not just their numbers but also their distribution in the area. We’ll continue to monitor that, again in relation to the various shipping proposals and activities that are proposed.”

It was during that study on humpbacks that the researchers from the Gitga’at Nation and the Cetacean Lab noticed the appearance of fin whales, another species that had been hit hard by whaling. (“We’ve worked very closely with the Cetacean Lab group and frankly without their help we would never have published any of this work because their data certainly was instrumental in getting the overall data set that made possible a publishable study,” Picard said.)

“We have observed is that fin whales have increased in their abundance in the area quite a bit, “ Picard said. “I can remember when we first started doing surveys, there were not too many. We’ve gone from seeing a couple over the course of an entire year. Now when we do our marine mammal surveys in the area the fin whales you pretty much see in every survey and in more and more numbers. So it’s quite encouraging to see that fin whales are becoming more abundent in the area. They were also hunted, so if you factor in the days of commercial whaling operations, that of course has stopped, so its encouraging to see that their numbers are coming back too.

The fin whales tend to be found in many of the same areas at the humpack whales are using, Caamaño Sound, Campania Sound and areas south of Gil Island. “we’ve also seen them more in the interior waters like Squally Channel, Wright Sound, Whale Channel, similar to the areas where we see the humpbacks.

“We haven’t done the same level of detailed analysis on the fin whale distribution as we have with the humpback, so it’s just my overall impression that they’re using similar habitats.

“It’s unique for fin whales to be using these more confined waters. It is my understanding that they are more of an open water species. I think that makes the area fairly unique,” he said.
Picard added it would be interesting to do a historic study to see how many fin whales were taken by whalers in the previous decades, especially in Caamaño Sound, Squally Channel and Wright Sound.

“The fact that we saw so many humpbacks relative to the size of the area, which is pretty small relative to the whole coast, so there must be a high abundance of food in the area,” Picard said.

“I’d like to get a better understanding of what is really driving the food abundance in the area. What is the oceanography in the area, what are the currents, what is driving that high area of biological activity that the whales seeming to be homing in on.”

Humpback whale
Humpback whale in the Kildala Arm, September 14, 2013. (Robin Rowland)

That means, Picard believes, that there could be krill and juvenile herring schooling in the upper Douglas Channel and that is what is attracting the whales.

One of the next steps, Picard said, is to study social interaction among whales. “We do take identification photographs, so we get a sense of who’s hanging out with who; who is bringing their calves into the area to introduce them into what seems to be very good whale habitat,” Picard.

So one aim of a future study would be to se what role social interactions play in the increased whale sightings in the Douglas Channel. He also wants to know what role are the potential negative impacts on that whale social interaction comes noise impacts, or being struck by ships, and the potential environmental affects of oil spills. “So do these social interactions decrease as the impacts increase, does that mean there are going to be fewer whales that come into this area? Those are some of the questions we want to address.”

Letting salmon escape from nets could benefit grizzly bears and even the fishers, study says

Grizzly eating a salmon
A grizzly bear eats a salmon. A new study says managers must consider the value of salmon to the entire ecosystem. (Jennifer Allan)

A new study suggests that the health of the grizzly bear population is also a strong indicator of the health of Pacific salmon—and perhaps surprisingly, allowing grizzlies to consume more salmon will, in the long term, lead to more, not less, salmon.

The study, led by Taal Levi, of the University of California at Santa Cruz and colleagues from Canada, suggests that allowing some more Pacific salmon to escape the nets of the fishing industry and thus spawn in coastal streams would not not only benefit the natural environment, including grizzly bears, but could also eventually lead to more salmon in the ocean. Thus there would be larger salmon harvests in the long term—a win-win for ecosystems and humans.

The article, “Using Grizzly Bears to Assess Harvest-Ecosystem Tradeoffs in Salmon Fisheries,” was published April 10 in the online, open-access journal PLoS Biology. In the study  Levi and his co-authors investigate how increasing “escapement”—the number of salmon that escape fishing nets to enter streams and spawn—can improve the natural environment.

“Salmon are an essential resource that propagates through not only marine but also creek and terrestrial food webs,” said lead author Levi, an environmental studies Ph.D. candidate at UCSC, specializing in conservation biology and wildlife ecology.

Salmon fisheries in the northwest Pacific are generally well managed, Levi said. Managers determine how much salmon to allocate to spawning and how much to harvest. Fish are counted as they enter the coastal streams. However, there is concern that humans are harvesting too many salmon and leaving too little for the ecosystem. To assess this, the team focused on the relationship between grizzly bears and salmon. Taal and his colleagues first used data to find a relationship between how much salmon were available to eighteen grizzly bear populations, and what percentage of their diet was made up of salmon.

The study looked at Bristol Bay, Alaska, the Chilko and Quesnel regions of the Fraser River watershed and Rivers Inlet on the Inside Passage, just northeast of northern Vancouver Island.
The study says adult wild salmon are “critical” to ocean, river and terrestrial ecosystems. As well as humans, salmon are eaten by orcas, salmon sharks, pinnipeds (seals and sea lions). On land, salmon are eaten by black and grizzly bears, eagles and ravens.

Because the grizzly is the “terminal predator” the study says “if there are enough salmon to sustain healthy bear densities, we reason there should be sufficient salmon numbers to sustain populations of earlier salmon-life history predatory such as seabirds, pinnipeds and sharks.”
As is well known in the northwest, the study says “bears are dominant species mediating the flow of salmon-derived nutrients from the ocean to the terrestrial ecosystem. After capturing salmon in estuaries and streams grizzly bears typically move to land to consume each fish, distributing carcass remains to vertebrate and invertebrate scavengers up to several hundred metres from waterways.”

“We asked, is it enough for the ecosystem? What would happen if you increase escapement—the number of fish being released? We found that in most cases, bears, fishers, and ecosystems would mutually benefit,” Levi said.

The problem, the study says, is that fisheries management have a narrow view of their role, what the study calls “single-species management,” concentrating on salmon and not the wider ecosystem. “Currently,” the study says, under single-species management, fisheries commonly intercept more than 50 per cent of in bound salmon that would otherwise be available to bears and the terrestrial and aquatic ecosystems they support.”

The relationship between salmon and bears is basic, Levi said. “Bears are salmon-consuming machines. Give them more salmon and they will consume more—and importantly, they will occur at higher densities. So, letting more salmon spawn and be available to bears helps not only bears but also the ecosystems they nourish when they distribute the uneaten remains of salmon.”

When salmon are plentiful in coastal streams, bears won’t eat as much of an individual fish, preferring the nutrient-rich brains and eggs and casting aside the remainder to feed other animals and fertilize the land. In contrast, when salmon are scarce, bears eat more of a fish. Less discarded salmon enters the surrounding ecosystem to enrich downstream life, and a richer stream life means a better environment for salmon.

In four out of the six study systems, allowing more salmon to spawn will not only help bears and the terrestrial landscape but would also lead to more salmon in the ocean. More salmon in the ocean means larger harvests, which in turn benefits fishers. However, in two of the systems, helping bears would hurt fisheries. In these cases, the researchers estimated the potential financial cost—they looked at two salmon runs on the Fraser River, B.C., and predicted an economic cost of about $500,000 to $700,000 annually. This cost to the human economy could help support locally threatened grizzly bear populations, they argue.

While these fisheries are certified as sustainable by the Marine Stewardship Council (MSC), the researchers suggest that the MSC principle that fisheries have minimal ecosystem impact might not be satisfied if the fishery is contributing to grizzly bear conservation problems.
The researchers believe the same analysis can be used to evaluate fisheries around the world and help managers make more informed decisions to balance economic and ecological outcomes.

 

What do grizzlies eat in northwestern BC ?

The current study and previous studies track the grizzly’s diet by studying the nitrogen and carbon istopes in grizzly hair. In one study in the early part of this decade, the BC Ministry of the Environment used guard hairs from “passive hair snags” as well as samples from bears killed by hunters or conservation officers.

The 2005 study says “Guard hairs are grown between late spring and fall, thus integrating the diet over much of the active season of temperate-dwelling bears.” Analysis of the isotopes can show what the bears ate over the season.

The study identified four elements in the grizzly diet across British Columbia, Alaska, Yukon and the Northwest Territories: plants, “marine-derived nutrients” mostly salmon, meat (primarily from ungulates such as moose) and in inland areas, kockanee salmon.

As could be expected, grizzly salmon consumption is highest in coastal areas. Males generally consume more salmon than females, likely because a mother grizzly may avoid taking salmon if there is danger to the cubs from males. The further inland a grizzly is found, salmon is a lesser factor in the bear’s diet. In Arctic regions, grizzlies can feed on arctic char, whales, seals and barren-ground caribou.

So what do local grizzlies eat? (excerpts from the 2005 study, Major components of grizzly bear diet across North America,  National Research Council Research Press  published March 28, 2006)

Map of grizzly diet and salmon
Grizzly consumption of salmon on the northwest coast (NRC)

North Coast 54.54 N 128.90 W (north and west of Kitimat)
Plants 33 per cent Salmon 67 per cent

Mid Coast 52.50 N 127.40 W (between Bella Bella and Ocean Falls)
Plants 58 per cent Salmon 42 per cent

Upper Skeena Nass 56.80 N 128.80 W
Plants 71 per cent Salmon 5 per cent Meat 13 per cent

Bulkley Lakes 54.10 N 127.10 W
Plants 63 per cent Salmon 6 per cent Meat 16 per cent Kokanee 15 per cent

Cranberry 55.40 N 128.40 W (near Kiwancool)

Plants 30 per cent Salmon 17 per cent Meat 40 per cent Kokanee 13 per cent

Khutzeymateen 54.68 N 129.86 W (near Prince Rupert)
Plants 22 per cent salmon 78 per cent

 

###

Other authors of the 2010 study are Chris Darimont, UCSC, Misty MacDuffee Raincoast Conservation Foundation, Denny Island, BC; Marc Mangel, Paul Paquet, UCSC and University of Calgary, Christopher Wilmers, USCC
Funding: This work was funded by an NSF GRF and Cota-Robles Fellowship (TL), a NSERC IRDF (CTD), the Wilburforce and McLean Foundations, and Patagonia. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

2005 study by Garth Mowat Aurora Research  Crescent Valley BC and  Douglas Heard BC Ministry of the Environment, Nelson