National Geographic maps Haisla and other First Nations’ traditional territory, pipeline routes and BC ‘s wild salmon

The September issue of National Geographic includes a large map of British Columbia it calls “Claiming British Columbia.”

natgeohaisla3
(National Geographic)

The map has three themes: First Nations’ traditional territory, the routes of proposed pipeline projects, both LNG and diluted bitumen, and it features a sub map that looks at what the map calls the “Troubled Salmon” fishery.

The cartographers at National Geographic are being very careful, avoiding such troubling issues as competing land claims among First Nations, unresolved land claims with the federal and provincial governments and treaty status.

natgeohaisla
(National Geographic)
(National Geographic)
(National Geographic)

So by and large the map groups First Nations by language group unless there are definite treaty or reserve boundaries. Large reserves under the Indian Act are on the map, but given the post stamp size of many reserves in British Columbia, those reserves are too small to be seen on the map. Towns and cities are identified as “First Nations” communities which often overlap with settler communities. Again the map misses many smaller communities, so Kitimat is on the map, while Kitamaat Village is not.

(National Geographic)
(National Geographic)

The map identifies Haisla traditional territory as “Xenaksilakala/Xa”islakala” and also includes the Kitlope Heritage Conservancy Protected area.

The article in the September issue is called The Pacific Coast, but unfortunately there is not much of a tie-in with the map, since it concentrates on California and Alaska with only a passing mention of British Columbia.

On the obverse side of the map is the poster that is promoted on the magazine cover, a beautiful painting of “The Changing Pacific Coast” which covers kelp and every creature from phytoplankton and zooplankton all the way to humpback whales and sea gulls (but for some reason no bald eagles). It is likely that poster will be on display in classrooms up and down the coast before school opens next week.

Study confirms salmon major part of First Nations culture during last Ice Age, 11,800 years ago

The Ice Age First Nations in the interior of Alaska relied more heavily on salmon and freshwater fish in their diets than previously thought, according to a new study from the University of Alaska Fairbanks.

First Nations of the Pacific Coast have always recognized the value of the salmon. Archaeologists have used new techniques to date the remains of salmon found in hearths back more than 11,000 years. The results now offer a more complex picture of Alaska’s ice age residents, who were previously thought to have a diet dominated by terrestrial mammals such as mammoths, bison and elk.

A team of researchers made the discovery after taking samples from 17 prehistoric hearths along the Tanana River, then analyzed stable isotopes and lipid residues to identify fish remains at multiple locations.

The project also found the earliest evidence of human use of anadromous salmon in the Americas, dating back at least 11,800 years.

Chum salmon (DFO)
Chum salmon (DFO)

The results of the study were published today in the Proceedings of the National Academy of Sciences.

DNA analysis of chum salmon bones from the same site on the Tanana River had previously confirmed that fish were part of the local indigenous diet as far back as 11,500 years ago. But fragile fish bones rarely survive for scientists to analyze, so the team used sophisticated geochemistry analyses to estimate the amount of salmon, freshwater and terrestrial resources ancient people ate.

A team led by UAF postdoctoral researcher Kyungcheol Choy analyzed stable isotopes and lipid residues, searching for signatures specific to anadromous fish. The effort demonstrated that dietary practices of hunter-gatherers could be recorded at sites where animal remains hadn’t been preserved.

“It’s quite new in the archaeology field,” Choy said. “There’s a lot in these mixtures that’s hard to detect in other ways.”

Ben Potter, a professor of anthropology at UAF and co-author of the study, said the findings suggest a more systematic use of salmon than DNA testing alone could confirm.

“This is a different kind of strategy,” Potter said. “It fleshes out our understanding of these people in a way that we didn’t have before.”

The study required cooperation between UAF’s Department of Anthropology and the Institute of Northern Engineering’s Alaska Stable Isotope Facility to locate and interpret the presence of salmon remains at the sites. Potter said the process could be a template for how a diverse team of researchers can work together to overcome a scientific obstacle.

“It’s an awesome look at how we can merge disciplines to answer a question,” he said.

Ocean acidification a threat to the Dungeness crab: NOAA study

With climate change, the oceans are becoming more acid and that is a threat to the dungeness crab, according to a study by the US National Oceanic and Atmospheric Administration.

The study says ocean acidification expected to accompany climate change may slow development and reduce survival of the larval stages of Dungeness crab.

The dungeness crab is a key component of the Northwest marine ecosystem and vital to fishery revenue from Oregon to Alaska.

The research by NOAA Fisheries’ Northwest Fisheries Science Center in Seattle indicates that the declining pH anticipated in Puget Sound could jeopardize populations of Dungeness crab and put the fishery at risk. The study was recently published in the journal Marine Biology.

Ocean acidification occurs as the ocean absorbs carbon dioxide from the combustion of fossil fuels. Average ocean surface pH is expected to drop to about 7.8 off the West Coast by 2050, and could drop further during coastal upwelling periods.

Survival of Dungeness crab larvae, called zoeae, declined at the lower pH levels expected with ocean acidification. (Jason Miller)
Survival of Dungeness crab larvae, called zoeae, declined at the lower pH levels expected with ocean acidification.
(Jason Miller)

Dungeness crab is the highest revenue fishery in Washington and Oregon, and the second most valuable in California, although the fishery was recently closed in some areas because of a harmful algal bloom. The Dungeness crab harvest in 2014 was worth more than $80 million in Washington, $48 million in Oregon and nearly $67 million in California

“I have great faith in the resiliency of nature, but I am concerned,” said Jason Miller, lead author of the research, which was part of his dissertation. “Crab larvae in our research were three times more likely to die when exposed to a pH that can already be found in Puget Sound, our own back yard, today.”

Scientists collected eggs from Dungeness crabs in Puget Sound and placed them in tanks at the NWFSC’s Montlake Research Laboratory. The tanks held seawater with a range of pH levels reflecting current conditions as well as the lower pH occasionally encountered in Puget Sound when deep water wells up near the surface. Larvae also went into tanks with the even lower-pH conditions expected with ocean acidification.
115757_webcrab
“The question was whether the lower pH we can expect to see in Puget Sound interferes with development of the next generation of Dungeness crab,” said Paul McElhany, a NOAA Fisheries research scientist and senior author of the paper. “Clearly the answer is yes. Now the question is, how does that play out in terms of affecting their life cycle and populations overall?”

Larvae hatched at the same rate regardless of pH, but those at lower pH took longer to hatch and progressed through their larval stages more slowly. Scientists suggested that the lower pH may reduce the metabolic rate of embryos. That could extend their vulnerable larval period, or could jeopardize the timing of their development in relation to key food sources, researchers suggested.

Larval survival also dropped by more than half at lower pH. At pH 8.0, roughly equivalent to seawater today, 58 percent of the crab larvae – called zoeae – survived for 45 days. At pH 7.5, which sometimes occurs in Puget Sound now, survival was 14 percent. At pH 7.1, which is expected to roughly approximate the pH of water upwelling on the West Coast with ocean acidification, zoeae survival remained low at 21 percent.

“Areas of greatest vulnerability will likely be where deep waters, naturally low in pH, meet acidified surface waters,” such as areas of coastal upwelling along the West Coast and in estuary environments such Hood Canal, the new study predicts.

 

BC launching major study of Kitimat River, Kitimat Arm water quality

The Environmental Protection Division of BC’s Ministry of Environment is launching a major study of the water quality in the Kitimat valley, first on the Kitimat River and some of its tributaries and later on the Kitimat Arm of Douglas Channel.

There has been no regular sampling by the province in Kitimat since 1995 (while other organizations such as the District of Kitimat have been sampling).

Jessica Penno, from the regional operations branch in Smithers, held a meeting for stakeholders at Riverlodge on Monday night. Among those attending the meeting were representatives of the District of Kitimat, the Haisla Nation Council, LNG Canada, Kitimat LNG, Rio Tinto BC Operations, Douglas Channel Watch, Kitimat Valley Naturalists and the Steelhead Society.

As the project ramps up during the spring and summer, the ministry will be looking for volunteers to take water samples to assist the study. The volunteers will be trained to take the samples and monitored to insure “sample integrity.” Penno also asked the District, the Haisla and the industries in the valley to collect extra samples for the provincial study and to  consider sharing historical data for the study.

With the growing possibility of new industrial development in the Kitimat valley, monitoring water quality is a “high priority” for the province, Penno told the meeting. However, so far, there is no money targeted specifically for the project, she said.

Fishing and camping on the Kitimat River
Camping and fishing on the Kitimat River. (Robin Rowland/Northwest Coast Energy News)

The purpose of the study is to make sure water in the Kitimat valley meet the provinces water quality objectives, which have the aim of watching for degradation of water quality, upgrade existing water quality or protect for designated uses such as drinking water, wildlife use, recreational use and industrial water supplies as well as protecting the most sensitive areas. It also provides a baseline for current and future environmental assessment. (In most cases, testing water quality for drinking water is the responsibility of the municipalities, Penno said.  The province may warn a municipality if it detects potential problems, for example if a landslide increases metal content in a stream).

Under the BC Environment system, “water quality guidelines” are generic, while “water quality objectives” are site specific.

One of the aims is to compile all the studies done of the Kitimat River estuary by the various environmental impact studies done by industrial proponents.

The ministry would then create a monitoring program that could be effectively shared with all stakeholders.

At one point one member of the audience said he was “somewhat mystified” at the role of Fisheries and Oceans in any monitoring, noting that “when you phone them, nobody answers.”

“You mean, you too?” one of the BC officials quipped as the room laughed.

Water quality objectives

The last time water quality objectives were identified for the Kitimat River and arm were in the late 1980s, Penno told the meeting. The objectives were developed by the British Columbia government because of potential conflict between fisheries and industry at that time. The objectives were developed for the last ten kilometres of the Kitimat River and the immediate area around the estuary and the Kitimat Arm. “The Kitimat is one of the most heavily sport fished rivers in Canada,” she said.

However, the work at that time was only provisional and there was not enough water quality monitoring to create objectives that could be approved by the assistant deputy minister.

There has been no monitoring of the Kitimat River by BC Environment since 1995. “We’ve had a lot of changes in the Kitimat region, with the closure of Methanex and Eurocan, the modernization of Rio Tinto and potential LNG facilities.”

The main designated uses for the Kitimat River at that time were aquatic life, wildlife with secondary use for fishing and recreation.

She said she wants the stakeholders to identify areas that should be monitored at first on the river and the tributaries. Later in the summer, Environment BC will ask for suggestions for the estuaries of the Upper Kitimat Arm.

Participants expressed concern that the water supply to Kitamaat Village and the Kitimat LNG site at Bish Cove as well as Hirsch Creek and other tributaries should be included in the study. Penno replied that the purpose of the meeting was to identify “intimate local knowledge” to help the study proceed.

After a decade so of cuts, the government has “only so much capacity,” Penno said, which is why the study needs the help of both Kitimat residents and industry to both design the study and to do some of the sampling.

The original sampling station in the 1980s was at the Haisla Boulevard Bridge in Kitimat. A new sampling station has been added at the “orange” Kitimat River bridge on Highway 37. There is also regular sampling and monitoring at Hirsch Creek. The aim is to add new sampling points at both upstream and downstream from discharge points on the river.

The people at the meeting emphasized the program should take into consideration the Kitimat River and all its tributaries—if budget permits.

Spring freshette

Last year, the team collected five samples in thirty days in during four weeks in May and the first week in June, “catching the rising river quite perfectly” at previously established locations, at the Haisla Bridge and upstream and downstream from the old Eurocan site as well as the new “orange bridge” on the Kitimat River.

The plan calls for five samples in thirty days during the spring freshette and the fall rain and monthly sampling in between.

The stakeholders in the meeting told the enviroment staff that the Kitimat Valley has two spring freshettes, the first in March during the valley melt and later in May during the high mountain melt.

The plan calls for continued discussions with the industry stakeholders, Kitimat residents and the Haisla Nation.

The staff also wants the industrial stakeholders to provide data to the province, some of it going back to the founding of Kitimat if a way can be found to make sure all the data is compatible. One of the industry representatives pointed out, however, that sometimes data is the hands of contractors and the hiring company may not have full control over that data.

There will be another public meeting in the summer, once plans for sampling in the Kitimat Arm are ready.

Prepare now for drastic climate change, UBC study warns First Nations’ fishery, other stakeholders

Fewer salmon; many more sardines.

That’s one of the predictions from a new study from the University of British Columbia, looking at the future of the fishery on the coast.

The study concentrates on the First Nations fishery and warns that aboriginal people could face a catastrophic decline in the harvest of traditional species, especially salmon and herring roe on kelp over the next thirty years, a decline that will also have an equally devastating effect on commercial and recreational fishing.

The main cause of the decline is climate change and the warming of the coastal waters. The study projected “modest to severe declines in catch potential” for all current commercial fisheries along the coast.

The study says that for the First Nations the between $28 million to $36 million in revenue they got from fishing between 2001 and 2010 could fall by up to 90 per cent depending on how the climate changes.

A chart from the UBC study shows possible decline in fish species under different climate scenarios. (PLOS1)
A chart from the UBC study shows possible decline in fish species under different climate scenarios. (PLOS1)

One scenario calls for a decline of up to 40 per cent in chinook and pink salmon.

If there is any good news, if you can call it that, the decline will be not as bad in northern coastal waters as it will be the warmer waters near the Lower Mainland and southern Vancouver Island. The range of some species, including salmon, herring, halibut and possibly oolichan will move to farther north along the BC Coast and into Alaskan waters.

That means in time the warming waters will also encourage an increase in other species, including sardines and some clams.

The changing oceans mean that “an increase in the relative abundance of warmer-water species was projected to lead to new or increased opportunities for commercial harvests by 2050.”

The study is urging the First Nations and other stakeholders in the British Columbia fishery to start long term planning immediately to  anticipate changes in the coming decades.

The team of scientists led by Lauren Weatherdon, a graduate student at UBC, noted that while previous studies have looked at the impact of climate change on large-scale commercial fisheries, “few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities.”

The study Projected Scenarios for Coastal First Nations’ Fisheries Catch Potential under Climate Change: Management Challenges and Opportunities is published in the online journal PLOS One

The study was conducted in cooperation with the BC First Nations Fisheries Council and looked its seven coastal administrative regions “forming a sample of groups with diverse marine resources, geographical locations, territorial sizes, and treaty statuses.”

Within those regions 16 First Nations participated in the study, some under their treaty councils, including the Council of the Haida Nation, the Tsimshian Nations Treaty Society (including the Gitga’at at Hartley Bay and the Kitselas and Kitsumkalum near Terrace) and the Maa-nulth First Nations. The Heiltsuk First Nation at Bella Bella participated as an independent group.

regioncatchfn

The FNFC’s administrative regions intersect with five distinct ecological regions: the North Coast, comprising the Hecate Strait and Dixon Entrance; Haida Gwaii, which includes the waters surrounding the islands; the Central Coast, including Queen Charlotte Sound, Queen Charlotte Strait, and the southern tip of Hecate Strait; the Strait of Georgia; and the west coast of Vancouver Island (WCVI) .

The study says First Nations are likely to be exposed to different climate-related impacts on fisheries due to the differing ecological and biogeographical characteristics of these regions and to differing traditional and commercial harvests.

The study used a “dynamic bioclimate envelope” computer model to look at the changes to the distribution and relative abundances of the BC coastal species under two climate change scenarios, a high greenhouse gas model where society can’t curb emissions and a low greenhouse gas emission scenarios, depending on how society is able to curb the increase.

The study looked at ocean properties—including sea surface temperature, sea bottom temperature, salinity, oxygen concentration, surface action, and net primary production—using data from the US National Ocean and Atmospheric Administrations’  climate-related earth system model.

Climate change will mean that current species on the BC coast will “shift polewards.”

The study showed that by 2050, there could be declines in 87 of the 98 species in the study.

Greater losses in  what the study calls “species richness” is likely to occur towards the southern coast of British Columbia, falling primarily between 48°N and 51°N. But, overall,  species richness along coastal BC will continue—only with different species.

Most significantly the study projects a decline in the overall salmon catch from 17.1 per cent to 29.2 per cent, depending on the region and climate.

All aspects of the herring fishery, including roe herring, spawn-on-kelp, and the food and bait fishery could decline between 28.1 per cent and 49.2 per cent depending on the region.

The future of the oolichan is the most uncertain. One of the models studied projected a further 37.1 per cent decline in the oolichan, while other models called for for a decline between 5 per cent and 6.8 per cent. That will depend on how well, the oolichan already threatened in most regions of British Columbia are able to adapt to warmer waters or find a way to move their range northward.

The study says white sturgeon and Pacific sardines were projected to increase in abundance under both climate change scenarios, while manila clams were projected to increase in abundance by 14.5 per cent in one of the models. The eight remaining species showed little change.

The study suggests that the southern territories (Tsawwassen, Tla’amin, and Maa-nulth First Nations) will likely see a reduction in catch potential between -15.2 per cent and -27.8 per cent depending on how the climate changes.

On the north coast. The Haida and Tsimshian First Nations and those situated along the central or north-eastern coasts of Vancouver Island (Heiltsuk and ‘Namgis First Nations)  would likely see smaller reductions in relative catch for each territory, with estimates falling between -3.2 per cent and -8.2 per cent.

The study shows that for the First Nations along the North and Central Coasts of British Columbia (Gitga’at and Haida, and Heiltsuk and ‘Namgis) there will be neutral or positive shifts in catch potential for white sturgeon, kelp greenling, and two species of perch under both scenarios.

While varying regionally, both scenarios also suggested either a slight cumulative decline or negligible change in catch potential for clams, rockfish, lingcod, and sculpins across the North and Central Coast.

One potential problem the study suggests is that fishers in southern British Columbia may, in the future, try to move north to follow the harvest, leading to potential conflicts.  The cost of travel, may, however, discourage that.

One of the recommendations from the study is that First Nations revive the traditional clam gardens.

Traditional clam beds serve as an ideal example of a method that could be applied to offset climatic impacts through internalized mechanisms, using local cultivation to generate increased productivity by enhancing native habitat rather than redirecting extraction efforts towards other regions or species. Clam gardens constructed in a manner akin to those situated near ancient settlements of the Northern Coast Salish and Laich-kwil-tach First Nations have been found to generate higher clam densities, biomass, and growth rates than non-walled beaches . These benefits were observed for Pacific littleneck clams and butter clams , two clams that are of cultural, economic, and ecological importance to the region Reinstating clam beds in First Nations’ territorial lands has been suggested as a means of simultaneously achieving local conservation and cultural objectives and may thereby provide a politically and ecologically viable option for mitigating climate-related impacts.

The most important recommendation is that the First Nations and other stakeholders start cooperating immediately to offset how the changing climate with affect the fishery:

Management of salmon and herring stocks has been highly contentious due to the myriad of stakeholders who depend upon them, which include First Nations, recreational fisheries, and commercial fisheries….

Aside from fulfilling societal needs, salmon serve as key ecological components of the Pacific Northwest Coast, functioning as the mechanisms by which nutrients are transferred from the ocean to freshwater and terrestrial ecosystems

It says the projections show that a “redistribution of fishing effort” will not “fully offset declines in salmon and herring”

attaining a state of collaboration between First Nations, DFO, and other sectors has the potential to yield beneficial ecological and political results, if implemented correctly. Parallels exist between First Nations’ traditional fisheries management approaches and “modern” approaches (e.g., spatial management, mariculture, selective fishing, fishing closures), with differences arising primarily due to diverging worldviews.

It recommends local application of First Nations’ traditional management strategies to “provide opportunities to collaboratively engage in adaptive ecosystem-based management and to coordinate efforts to attain conservation objectives.”

They give an example of how the Nisga’a Nation have ensured their equal partnership in management by employing traditional fish wheel technology to monitor and assess stocks and by leveraging traditional ecosystem-based management practices that could be applied to plan long-term objectives and management approaches.

It concludes by saying that joint-management will not only work to reduce the impact of climate change but also head off potential conflict.

Through such joint-management regimes, traditional fisheries management strategies could be applied to advance localized research directives and to reduce impacts on stocks under unprecedented environmental change. Moreover, the risk of conflict over declining resources underlines the need to establish common and equitable ground to ensure successful joint management of fisheries, and to leverage collective expertise.

Chart from the study showing which fish species will move north up the coast as the climate changes. (PLOS1)
Chart from the study showing which fish species will move north up the coast as the climate changes. (PLOS1)

“Very low levels” of Exxon Valdez oil threaten salmon and herring survival 25 years later

“Very low levels” of crude oil from the 1989 Exxon Valdez spill in Prince William Sound, Alaska, are a threat to the survival of herring and pink salmon that spawn in the region, according to a study released today by the US National Oceanic and Atmospheric Administration.

The study shows that embryonic salmon and herring exposed to very low levels of crude oil can develop hidden heart defects that compromise their later survival.

That means that the Exxon Valdez spill on March 24, 1989 may have had much greater impacts on spawning fish than previously recognized, according to the study published in  Nature’s online journal  Scientific Reports Very low embyronic crude oil exposures cause lasting defects in salmon and herring.

“These juvenile fish on the outside look completely normal, but their hearts are not functioning properly and that translates directly into reduced swimming ability and reduced survival,” said John Incardona, a research toxicologist at NOAA Fisheries’ Northwest Fisheries Science Center (NWFSC) in Seattle. “In terms of impacts to shore-spawning fish, the oil spill likely had a much bigger footprint than anyone realized.”

This is a juvenile pink salmon exposed to low levels of crude oil as an embryo. While these fish appear outwardly normal, they nevertheless developed heart defects that compromised their ability to swim. Fish that are less able to forage and avoid predators are much less likely to survive to adulthood. (NOAA)
This is a juvenile pink salmon exposed to low levels of crude oil as an embryo. While these fish appear outwardly normal, they nevertheless developed heart defects that compromised their ability to swim. Fish that are less able to forage and avoid predators are much less likely to survive to adulthood. (NOAA)

Previous research has shown that crude oil disrupts the contraction of the fish heart muscle cells. Embryonic fish exposed to trace levels of crude oil grow into juveniles with abnormal hearts and reduced cardiorespiratory function.

“With this very early impact on the heart, you end up with an animal that just can’t pump blood through its body as well, which means it can’t swim as well to capture food, form schools, or migrate,” said Mark Carls, toxicologist at the Alaska Fisheries Science Center. “Crude oil is changing basic physiology, or what makes a fish a fish.”

The research builds on earlier work by the Auke Bay Laboratories, part of NOAA Fisheries’ Alaska Fisheries Science Center, which found much reduced survival of pink salmon exposed as embryos to polycyclic aromatic hydrocarbons (PAH) from crude oil.

“Our findings are changing the picture in terms of assessing the risk and the potential impacts of oil spills,” said Nat Scholz, leader of the NWFSC’s ecotoxicology program and a coauthor of the new study. “We now know the developing fish heart is exquisitely sensitive to crude oil toxicity, and that subtle changes in heart formation can have delayed but important consequences for first-year survival, which in turn determines the long-term abundance of wild fish populations.”

The Exxon Valdez aground on Bligh Reef in Prince William Sound in May 1989. (NOAA)
The Exxon Valdez aground on Bligh Reef in Prince William Sound in March 1989. (NOAA)

The Exxon Valdez spill was the largest in U.S. history, with extensive oiling of shoreline spawning habitats for Pacific herring and pink salmon, the two most important commercial fish species in Prince William Sound.

Herring larvae sampled in proximity to oil were visibly abnormal, and mortality rates were higher for pink salmon embryos at oil spill sites than unaffected regions.

The herring fishery collapsed three to four years after the spill, when the herring spawned in oiled areas reached reproductive maturity.

The paper notes that the contribution of the spill to the herring population collapse, if any, was never determined and remains controversial.

Other studies, however, tend to confirm the findings, including heart problems for fish exposed to the Gulf of Mexico Deepwater Horizon spill and even fish exposed to naturally occurring oil seeps.

Oil spill caused unexpected lethal impact on herring, study shows

Gulf oil spill caused heart defects in fish embryos new study finds

The new findings suggest that the delayed effects of the spill may have been important contributors to the declines.

 This image shows transient embryonic exposures to crude oil cause lasting reductions in the swimming speed of salmon and herring, months after additional juvenile growth in clean seawater. (NOAA)

This image shows transient embryonic exposures to crude oil cause lasting reductions in the swimming speed of salmon and herring, months after additional juvenile growth in clean seawater. (NOAA)

Scientists from the Northwest Fisheries Science Center and Alaska Fisheries Science Center temporarily exposed embryonic salmon and herring to low levels of crude oil from the North Slope of Alaska and found that both absorbed chemicals at similar concentrations in their tissues. The embryos were then transferred to clean seawater and raised as juvenile fish for seven to eight months.

Few of the exposed embryos were outwardly abnormal in any way. However, closer examination of the fish revealed subtle defects that could reduce their long-term survival.

Juvenile salmon exposed to oil grew more slowly, with those exposed to the highest concentrations growing the slowest. For salmon, early survival in the ocean is strongly influenced by juvenile growth, with smaller fish suffering higher loss to predators.

Scientists used swimming speed as a measure of cardiorespiratory performance and found that fish exposed to the highest concentrations of oil swam the slowest. Slower swimming is an indication of reduced aerobic capacity and cardiac output, and likely makes fish easier targets for predators.

Exposure to oil as embryos altered the structural development of the hearts of juvenile fish, potentially reducing their fitness and swimming ability. Poor swimming and cardiac fitness is also a factor in disease resistance.

Earlier studies on the ecosystem-scale crash of the Prince William Sound herring population  several years after the Exxon Valdez spill were based on higher levels of exposure to the oil. The new study shows that that cardiac injury occurs in normal-appearing fish that survive even lower level exposures.

The scientists reviewed data on measured oil concentrations in surface water samples collected in Prince William Sound after the oil spill and during the 1989 herring spawning season. Most of the 233 samples contained less oil than was believed to be toxic to herring at the time, based on visible gross developmental abnormalities. However, nearly all of the samples contained oil at or above concentrations shown in the new study to alter heart development.

If the Exxon Valdez spill impacted heart development among a large majority of fish that were spawned in proximity to oiled shorelines, the subsequent losses of juveniles to delayed mortality would have left fewer adults to join the population. Although not direct proof, this provides a plausible explanation for the collapse of the Prince William Sound herring stock four years later, when fish spawned during the oil spill would have matured.

The study concludes that the impacts of the Exxon Valdez spill on near shore spawning populations of fish are likely to have been considerably underestimated in terms of both the geographic extent of affected habitat and the lingering toxicity of low levels of oil. The findings will likely contribute to more accurate assessments of the impacts of future oil spills, Incardona said. “Now we have a much better idea of what we should be looking for,” he said.

That means, according to the study “that the impacts of the Exxon Valdez oil spill on populations of near shore spawning fish are likely to have been considerably underestimated, in term of both the geographic extent of affected habitats and the lingering toxicity of low levels of residual oil.”

The report calls for more studies of the sensitivity of the developing fish heart since the vulnerability “also has implications for other pollution sources in marine ecosystems, including increasing maritime vessel traffic and expanding land-based urban runoff.”

In 2013, the Northern Gateway Joint Review panel said this about the Exxon Valdez  oil spill.

Scientific studies after the Exxon Valdez spill indicated that the vast majority of species recovered following the spill and that functioning ecosystems, similar to those existing pre-spill, were established.

Species for which recovery is not fully apparent, such as Pacific herring, killer whales, and pigeon guillemots, appear to have been affected by other environmental factors or human influences not associated with the oil spill. Insufficient pre-spill baseline data on these species contributed to difficulties in determining the extent of spill effects.

Based on the evidence, the Panel finds that natural recovery of the aquatic environment after an oil spill is likely to be the primary recovery mechanism, particularly for marine spills. Both freshwater and marine ecosystem recovery is further mitigated where cleanup is possible, effective, and beneficial to the environment.

Natural processes that degrade oil would begin immediately following a spill. Although residual oil could remain buried in sediments for years, the Panel finds that toxicity associated with that oil would decline over time and would not cause widespread, long-term impacts.

Related

25th anniversary of Exxon Valdez disaster looms over Northern Gateway dispute

Dilbit dangerous to young fish, laboratory study shows

Diluted bitumen, also known as dilbit, a mixture of oil sands bitumen and natural gas dilutants can seriously harm fish populations, according to research study at Queen’s University and the Royal Military College of Canada published this week.

At toxic concentrations, effects of dilbit on exposed fish included deformities and clear signs of genetic and physiological stress at hatch, plus abnormal or uninflated swim bladders, an internal gas-filled organ that allows fish to control their buoyancy. Exposure to dilbit reduces their rate of survival by impairing their ability to feed and to avoid predators.

Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois' lab. (Queen's University)
Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois’ lab. (Queen’s University)

Among the other findings from the study were

    • Embryo toxicity of dilbit was comparable to that of conventional oils.
    • Developmental malformations increased with increasing dilbit concentrations.
    • Chemical dispersion broadened the genotoxic effects of dilbit

“This new study provides a clearer perspective on the potential risks to Canada’s aquatic resources of dilbit spills, and a technical basis for decisions on dilbit transportation within Canada,” says Peter Hodson Environment Studies, Biology at Queens. “It reduces some of the uncertainty and unknowns about the hazards of dilbit.”

This study characterized the toxicity and physiological effects of unweathered diluted bitumen (Access Western Blend dilbit; AWB) to a fish used for laboratory studies. Embryos of Japanese medaka (Oryzias latipes) were exposed for 17 days to dilutions of dilbit physically-dispersed by water and chemically-dispersed by dispersants

AWB dilbit exposure was not lethal to medaka, but resulted in a high prevalence of blue sac disease (BSD), impaired development, and abnormal or un-inflated swim bladders. Blue sac is a disease of young trout and other salmonid species; usually caused by unsuitable hatchery water. It turns the yolk sac bluish and is thought to be caused by a lack of oxygen.

The research was funded by Fisheries and Oceans Canada’s National Contaminants Advisory Group and the next stage will determine whether fish species native to Canada will be affected by dilbit exposure. The work also includes the development of genetic markers of exposure to dilbit and toxicity that could be used to assess whether wild fish that survive a spill are still affected.

The research team includes Dr. Valérie Langlois (Environmental Studies, Royal Military College of Canada) and Dr. Barry Madison (Royal Military College of Canada).

Dr. Hodson is also a member of a Queen’s research team tasked to determine whether dilbit spilled into rivers would contaminate bed sediments, specifically areas where fish such as salmon, trout, chars, whitefish and graylings spawn, to the extent that the survival of their embryos would be affected.

The research was published in ScienceDirect and is one of the first studies of dilbit on young fish.

The finding could be significant because both the proposed Northern Gateway pipeline and the proposed Kinder Morgan expansion will cross areas near spawning streams.

Haisla chief counsellor Ellis Ross on the dilemma of climate change and development

Haisla Nation Chief Counsellor spoke at Mt. Elizabeth Theatre on June 9, 2015, introducing David Suzuki who was on a speaking tour. This is a lightly edited report on his remarks that outline some of the dilemmas facing the Haisla and the Kitimat valley in an age that needs development but faces climate change.

Good evening.

Among chiefs, I am elected, not hereditary, you are born into that position, I wasn’t born into it.

I am basically a regular commoner just like you guys with a high school education and one year of college and a lot of experience outside my community that I bring back.

These topics about climate change locally, provincially, nationally and worldwide, they’re complicated topics.

Haisla Chief Counsellor Ellis Ross speaks at Mt. Elizabeth Theatre,  June 9, 2015 (Robin Rowland/Northwest Coast Energy News)
Haisla Chief Counsellor Ellis Ross speaks at Mt. Elizabeth Theatre, June 9, 2015 (Robin Rowland/Northwest Coast Energy News)

There’s no one true fix for all of it. The problem is that the Haisla have been thrust into the middle of it and we have to answer it, which is very unfair.

So when we’re talking about what really is a Haisla value, a west coast, a British Columbia value. I must tell you I value the Haisla people, my people, that land, the territory, I think about the Haisla people because I don’t think anyone has given the Haisla people a priority in the last 40 to 50 years.

All the decisions that were made about Haisla territory, that affected out people, were made without us.

The result was that we ended up with 80 per cent unemployment, historically over the last 40 years we have ended up with cancer and we can’t get rid of it.

Poverty, people couldn’t get enough money to fix their bathrooms when the floor was rotting out.

The saying is that you can always tell when the reserve starts is when the pavement ends is true. Unless there’s a political agenda to actually pave the road to the village. The environmental questions that have been raised over the past ten years are not new to the Haisla.

In the 70s it was the Haisla alone who tried to battle emissions when nobody even knew what emissions meant. They tried to stop the effluent dumping into the river that killed off the river they tried to stop the diking of the river so parts of the land could be protected, parks.

When the Haisla knew that the oolichan that was estimated to be hundreds of thousands of tons, were dying off quickly in the span of five years. Nobody listened.
Now the DFO and Canada is realizing that the demise of the oolichan is a signal that something is wrong with the ecosystem.

I would love that someone would come around to the idea of thanking the Haisla people for all the work that they did and went and unheard even in meetings like this today.

And we’re not even talking about salmon.
In all this time, I’ve read all the documents, all the speeches and listened to all the promises of a better tomorrow for all the people but nobody delivered it.

Countless academic papers have been written about Indian poverty.

Nothing was done.

Non-profit organizations used the Haisla to further their cause and left town when they had achieved what they had achieved.

At the same time all the decisions continued to be made without us. And everybody benefited except us.

What happened in the end and the corporations made their billions and made enough money to pay off the mortgage and move down south, the Haisla were left with the mess to clean up. Today we’re still battling to get some of these sites cleaned up and we’re still not getting help.

I don’t blame anyone for this. Whether you’re am environmental organization, a government or a corporation or a non-profit organization, I don’t blame you for this because you have a mandate, you have a special interest. That’s what you’re trying to achieve.

I have a mandate. I do have an organization now that is fully equipped to look at every single permit that comes from the provincial government and the federal government and try to mitigate it given our capacity and our lack of funding.

But some of that benefit has to flow to the Haisla people. It’s our territory.

When you think about what has happened to us, the Haisla, we think about residential schools and I’ve been reading the debate on whether or not it’s genocide or not and I think people are missing the point.

Residential schools were only 10 per cent of a larger program to get rid of the Indian.

The ninety per cent was what was stolen from us as well. The land was taken away and we were put on a chunk of land across the Channel, that was described by the Indian Agent as worthless, it’s not even good for agriculture so give it to the Indians. We had to get permission from the federal government to leave that reserve. We had to get a piece of paper that said he’s allowed to leave the reserve and go pick berries.

We also have had no help other than some academic programs and some sort of study to deal with our suicides. I’m not just talking Haisla here. I really thought that one suicide every five years was really a bad thing. But finding out that my neighbors down the road from here to Prince George are dealing with ten suicides in the first quarter of this year.

It breaks my heart.

Who is responsible for that? If it’s not the government, if it’s not the non-profits, if it’s not corporations, who is it?

I stepped up and said I’ll take full responsibility for this but that means I have a hard message to deliver and I will deliver it on behalf of the Haisla people.

When it comes to climate change, we are living at a very unfortunate time, because finally we’re accepted at the provincial table, at the federal table, the corporate table.

We’re being included but unfortunately, we have to look at climate change as well. It’s a very tough position to be in when you’ve got a Grade 12 education from 1984 and one year of college education in 1985.

It’s a very tough topic, I can tell you. I’ve been to China, I’ve been to Korea and no matter what you say about the emissions there, Canada and BC have no problems with emissions here until you visit China.

They’re not going to get off crude oil, they’re not going to get off diesel fuel, they’re not going to give up coal because a billion people there want the same standard of living that you have in Canada. And I’m talking about India as well. They want the same standard. They want good houses; they want to own a car. They are not going to stop their thirst for energy.

I don’t have the answers.

I still believe that natural gas is a lot cleaner than coal and even if you put a small dent in it, it’s not enough to get these guys off nuclear power.

And the solar power you’re talking about, they do it for show but that’s not going to meet the energy needs of China. We’re not even talking about India; we’re not even talking about Korea.

You say can you help get China off dirty fuel, but all their pollution keeps getting dumped on South Korea.

I represent 1700 people, how am I going to do that?

We’re being asked to do a near impossible task while I’m trying to dig my people out of poverty. At the same time, when we get this opportunity we’re giving our members very mixed messages, including our young people which is heart breaking for me.

Because we’re telling them get an education, don’t be a burden on society, get a job, but by the way there are no jobs here, there’s no way to get into existing industries so you better go to the oil fields of Alberta to get a job. A lot of our people head over there or to Vancouver.

I’ve been following this debate on climate change for quite a while now, for over six years. I’ve been listening to everybody, I’ve been listening to corporations, being listening to governments, been listening to non-profits, but on behalf of the Haisla Nation Council, I’m here to tell you, that when it comes to the future of the Haisla I have very little patience with this. I don’t want to see another essay about what to do about Indian suicides.

I believe that our people are being sick and tired of being left out and left behind, while everyone else is moving on with their lives. I do want to what’s best for the region I do want to do what’s best for the province and Canada and the world. But I will not do it at the expense of the Haisla people. We’ve been at the dirty end of the tick for the last 40 years. It’s going to stop. Thank you very much and enjoy your evening.

The “wisdom of elders”: Post menopausal matriarchs lead Orca resident pods, study finds

Call it “the wisdom of elders.”

A new study concludes that British Columbia’s southern resident Orca pod is led by “post reproductively aged” females who help it survive during lean years.

According to the study, the older females serve as key leaders, directing younger members of the pod, and especially their own sons, to the best spots for landing tasty meals of salmon, helping their kin to survive. This leadership role takes on special significance in difficult years when salmon are harder to come by.

The researchers say the discovery offers the first evidence that a benefit of prolonged life after reproduction is that post-reproductive individuals act as repositories of ecological knowledge.

There are only three species on Earth where females go through menopause, human beings, killer whales and pilot whales.

Orca feeding chart
Older females lead Orca pods in hard times. (Current Biology)

“Menopause is one of nature’s great mysteries,” says Lauren Brent of the University of Exeter in the United Kingdom. “Our study is the first to demonstrate that the value gained from the wisdom of elders may be one reason female killer whales continue to live long after they have stopped reproducing.”

The scientists say in their paper this also provides insights into why human women continue to live long after they can no longer have children.

The study  is in Current Biology “Ecological Knowledge, Leadership, and the Evolution of Menopause in Killer Whales” by Lauren J.N. Brent, Daniel W. Franks, Emma A. Foster, Kenneth C. Balcomb, Michael A. Cant and Darren P. Croft, says:

Leadership by these females is especially prominent in difficult years when salmon abundance is low.

Female killer whales typically become mothers between the ages of 12 and 40, but they can live for more than 90 years. By comparison, male Orcas rarely make it past 50.

Resident pods feed mostly on Chinook salmon.  Chinook make up than 90 per cent of their diet during the summer.  The abundance of salmon fluctuates due to fishing by humans and weather changes such as El Nino and climate change. The study says that individual killer whales with information on where and when to find salmon provide other group members with considerable benefits.

To find out who were the leaders of the Southern Resident pod, the team analyzed 751 hours of video footage taken over 35 years of as many as 102 Southern resident killer whales in the coastal waters of British Columbia and Washington engaged in directional travel , collected during nine summer salmon migrations. The scientists also used multigenerational demographic records have been recorded for the Southern resident killer whales since 1976, allowing them to know the family relationships of the Orcas.

 

orcas
A killer whale pod swims in tight configuration.
(David Ellifrit, Center for Whale Research)

The study found that in any given year,  adult females were more likely to lead  the  pod’s group movement compared to adult males  They concluded that Orca matriarchs over the age of 35 years “the mean age at last reproduction for Southern resident females that lived past the age of peak adult female mortality” were more likely to lead the pod “compared to reproductively aged females.”

The scientists then compared fisheries data on Chinook salmon abundance to whale behavior. It showed that “post-reproductively aged females were more likely to lead group movement in years when salmon abundance was low.”

The scientists concluded that shows that prolonged life after the reproductive years allows the “individuals act as repositories of ecological knowledge.”

In the case of Orcas, the post menopausal matriarchs “lead group movement in and around salmon foraging grounds, and this is exaggerated when salmon are in low supply and the selective pressure to locate food is at its highest.”

The researchers also found that females are more likely to lead their sons compared to their daughters.

Daniel Franks of the University of York explained: “Killer whale mothers direct more help toward sons than daughters because sons offer greater potential benefits for her to pass on her genes. Sons have higher reproductive potential and they mate outside the group, thus their offspring are born into another group and do not compete for resources within the mother’s matriline. Consistent with this, we find that males follow their mothers more closely than daughters.”

So how does the study of Orca elders apply to human beings?

“In humans, it has been suggested that menopause is simply an artefact of modern medicine and improved living conditions,” said Darren Croft of the University of Exeter. “However, mounting evidence suggests that menopause in humans is adaptive. In hunter-gatherers, one way that menopausal women help their relatives, and thus increase the transmission of their own genes, is by sharing food. Menopausal women may have also shared another key commodity – information.”

Recent studies show that living beyond the age of 60 is much more comon in hunter-gatherer cultures than previsouly believed.

So the study concludes that in humans:

In hunter-gatherers, one way that menopausal women help their relatives, and thus improve their own inclusive fitness, is by sharing food.

Menopausal women may also share another key commodity—information. Humans were preliterate for almost the entirety of our evolutionary history and information was necessarily stored in individuals. The oldest and most experienced individuals were those most likely to know where and when to find food, particularly during dangerous and infrequent conditions such as drought.

As for Orcas:

Wild resident killer whales do not have the benefits of medical care, but, similar to humans, females can live for more than 40 years after they have ceased reproducing.  An individual resident killer whale’s ability to find salmon is crucial to their fitness; in years with low salmon abundance, resident killer whales are more likely to die and less likely to reproduce.

Our finding that postreproductively aged female killer whales are especially likely to lead group movement in years with low salmon abundance suggests that the ecological knowledge of elders helps explain why females of this species live long after they have stopped reproducing. Postreproductive female killer whales may provide other knowledge to their relatives. For example, postreproductive members of this socially complex species may have greater social knowledge that could help kin navigate social interactions.

In some other species, like African elephants, survival is enhanced in the presence of older female relatives, who are more capable of assessing social and predatory threats.

So the study asks “why is menopause restricted to some toothed whales and humans?”

The scientists believe that for evolution, menopause will only evolve when the benefits for the species outweigh the costs of terminating reproduction.

In humans, resident killer whales, and short-finned pilot whales,  when a female  usually stays in the immediate location of her family, that means that  the benefits she can gain through helping her relatives, increases with age.

Among Southern resident Orcas, neither sex leaves the family pod and “females are born into groups with their mothers and older siblings.”

As the female resident Orca ages, her older relatives who die are replaced by “her own nondispersing sons and daughters.” In ancestral humans, resident killer whales and short-finned pilot whales, the benefits of the elders helping therefore increase with age, which is thought to predispose these three species to menopause

The study notes that Orcas have a number of different “ecotypes” or cultures “which differ in their prey specialization, morphology, and behavior, and which in some cases represent genetically distinct populations.” That means “that not all ecotypes are characterized by the same social structure as resident killer whales” where females leave their birth pod. The say more study is needed to find out if menopause occurs in those Orca pods and what the role of older females is in those pods. The study also did not look at the northern residents who frequently visit Douglas Channel.

Intertidal zone–and crabs– at high risk from climate change, study says

Climate change, which will raise ocean temperatures and more carbon dioxide in the atmosphere which will increase the acidification of the oceans will have the greatest affect on the intertidal zones—and a key indicator species, crabs and similar creatures.

A study by San Fransisco State University published today in the Journal of Experimental Biology used the small (usually 15 millimetre) porcelain crab  to simulate the conditions that will come to the intertidal zone and affect other species including the larger dungeness crab. ( According to Wikipedia, porcelain crabs are an example of carcinisation, whereby a non-crab-like animal,in this case a relative of a squat lobster evolves into an animal that resembles a true crab.)

A porcelain crab (Nick Hobgood via Wikipedia)
A porcelain crab (Nick Hobgood via Wikipedia)

Studies have shown that as climate changes, coastal ecosystems will be see “have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH.”

The study by co-author Jonathan Stillman and his colleagues, is the first to explore intertidal zone organisms’ response to combined variation in temperature and pH, which is expected to intensify in the future due to climate change and ocean acidification.

The current and previous studies have shown that during low tide, air temperatures in the intertidal zone can fluctuate dramatically as much as 20 degrees celcius over short periods of time up to six hours. Temperatures can reach extremes when low tides coincide with hot days. Marine intertidal organisms tolerate these natural temperature fluctuations, yet it is known that they are limited in their scope to tolerate future warming.

In the simulation porcelain crabs  were placed in a specially built aquarium designed to simulate the natural environment, including tidal changes. At low tide, with the crabs exposed to the air, the researchers varied the temperature to mirror day-to-day changes the crabs currently experience — such as cooler air on a cloudy day and warmer air on a sunny day — as well as conditions expected in the future. At high tide, with the crabs submerged, they adjusted pH levels in the same fashion.

As the temperature rose and pH levels dropped — conditions expected in the future due to climate change — the crabs’ ability to withstand heat increased. But at the same time, researchers found, the crabs’ metabolism decreased. In addition, the combined effect of higher temperatures and lower pH levels was greater than the effect of either of those two factors alone.

“When you combine these things together, they slow down metabolism, which means crabs become sluggish and have less overall energy to do things like growth or reproduction,” Stillman said. “If their whole energy budget is a pie, then in the future the size of the pie is going to be smaller, and a larger percentage of it is going to be taken up by survival and maintenance.”

The study says that although porcelain crabs are not particularly important to humans — they are not fishery crabs such as Dungeness — they are an important food source for coastal fish, birds and other crabs.

The results suggest “there is a potential for adverse long-term ecological consequences for intertidal ectotherms”– that is creatures that depend on the external temperatures to regulate body heat– “exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.”

The porcelain crabs can also be seen as a model for scientists to understand the impacts of climate change and ocean acidification on crustaceans in general, Stillman said. Future studies will look at the impact of varying temperature and pH changes on different species of porcelain crabs, juvenile crabs and crab embryos.