Ocean acidification a threat to the Dungeness crab: NOAA study

With climate change, the oceans are becoming more acid and that is a threat to the dungeness crab, according to a study by the US National Oceanic and Atmospheric Administration.

The study says ocean acidification expected to accompany climate change may slow development and reduce survival of the larval stages of Dungeness crab.

The dungeness crab is a key component of the Northwest marine ecosystem and vital to fishery revenue from Oregon to Alaska.

The research by NOAA Fisheries’ Northwest Fisheries Science Center in Seattle indicates that the declining pH anticipated in Puget Sound could jeopardize populations of Dungeness crab and put the fishery at risk. The study was recently published in the journal Marine Biology.

Ocean acidification occurs as the ocean absorbs carbon dioxide from the combustion of fossil fuels. Average ocean surface pH is expected to drop to about 7.8 off the West Coast by 2050, and could drop further during coastal upwelling periods.

Survival of Dungeness crab larvae, called zoeae, declined at the lower pH levels expected with ocean acidification. (Jason Miller)
Survival of Dungeness crab larvae, called zoeae, declined at the lower pH levels expected with ocean acidification.
(Jason Miller)

Dungeness crab is the highest revenue fishery in Washington and Oregon, and the second most valuable in California, although the fishery was recently closed in some areas because of a harmful algal bloom. The Dungeness crab harvest in 2014 was worth more than $80 million in Washington, $48 million in Oregon and nearly $67 million in California

“I have great faith in the resiliency of nature, but I am concerned,” said Jason Miller, lead author of the research, which was part of his dissertation. “Crab larvae in our research were three times more likely to die when exposed to a pH that can already be found in Puget Sound, our own back yard, today.”

Scientists collected eggs from Dungeness crabs in Puget Sound and placed them in tanks at the NWFSC’s Montlake Research Laboratory. The tanks held seawater with a range of pH levels reflecting current conditions as well as the lower pH occasionally encountered in Puget Sound when deep water wells up near the surface. Larvae also went into tanks with the even lower-pH conditions expected with ocean acidification.
115757_webcrab
“The question was whether the lower pH we can expect to see in Puget Sound interferes with development of the next generation of Dungeness crab,” said Paul McElhany, a NOAA Fisheries research scientist and senior author of the paper. “Clearly the answer is yes. Now the question is, how does that play out in terms of affecting their life cycle and populations overall?”

Larvae hatched at the same rate regardless of pH, but those at lower pH took longer to hatch and progressed through their larval stages more slowly. Scientists suggested that the lower pH may reduce the metabolic rate of embryos. That could extend their vulnerable larval period, or could jeopardize the timing of their development in relation to key food sources, researchers suggested.

Larval survival also dropped by more than half at lower pH. At pH 8.0, roughly equivalent to seawater today, 58 percent of the crab larvae – called zoeae – survived for 45 days. At pH 7.5, which sometimes occurs in Puget Sound now, survival was 14 percent. At pH 7.1, which is expected to roughly approximate the pH of water upwelling on the West Coast with ocean acidification, zoeae survival remained low at 21 percent.

“Areas of greatest vulnerability will likely be where deep waters, naturally low in pH, meet acidified surface waters,” such as areas of coastal upwelling along the West Coast and in estuary environments such Hood Canal, the new study predicts.

 

BC launching major study of Kitimat River, Kitimat Arm water quality

The Environmental Protection Division of BC’s Ministry of Environment is launching a major study of the water quality in the Kitimat valley, first on the Kitimat River and some of its tributaries and later on the Kitimat Arm of Douglas Channel.

There has been no regular sampling by the province in Kitimat since 1995 (while other organizations such as the District of Kitimat have been sampling).

Jessica Penno, from the regional operations branch in Smithers, held a meeting for stakeholders at Riverlodge on Monday night. Among those attending the meeting were representatives of the District of Kitimat, the Haisla Nation Council, LNG Canada, Kitimat LNG, Rio Tinto BC Operations, Douglas Channel Watch, Kitimat Valley Naturalists and the Steelhead Society.

As the project ramps up during the spring and summer, the ministry will be looking for volunteers to take water samples to assist the study. The volunteers will be trained to take the samples and monitored to insure “sample integrity.” Penno also asked the District, the Haisla and the industries in the valley to collect extra samples for the provincial study and to  consider sharing historical data for the study.

With the growing possibility of new industrial development in the Kitimat valley, monitoring water quality is a “high priority” for the province, Penno told the meeting. However, so far, there is no money targeted specifically for the project, she said.

Fishing and camping on the Kitimat River
Camping and fishing on the Kitimat River. (Robin Rowland/Northwest Coast Energy News)

The purpose of the study is to make sure water in the Kitimat valley meet the provinces water quality objectives, which have the aim of watching for degradation of water quality, upgrade existing water quality or protect for designated uses such as drinking water, wildlife use, recreational use and industrial water supplies as well as protecting the most sensitive areas. It also provides a baseline for current and future environmental assessment. (In most cases, testing water quality for drinking water is the responsibility of the municipalities, Penno said.  The province may warn a municipality if it detects potential problems, for example if a landslide increases metal content in a stream).

Under the BC Environment system, “water quality guidelines” are generic, while “water quality objectives” are site specific.

One of the aims is to compile all the studies done of the Kitimat River estuary by the various environmental impact studies done by industrial proponents.

The ministry would then create a monitoring program that could be effectively shared with all stakeholders.

At one point one member of the audience said he was “somewhat mystified” at the role of Fisheries and Oceans in any monitoring, noting that “when you phone them, nobody answers.”

“You mean, you too?” one of the BC officials quipped as the room laughed.

Water quality objectives

The last time water quality objectives were identified for the Kitimat River and arm were in the late 1980s, Penno told the meeting. The objectives were developed by the British Columbia government because of potential conflict between fisheries and industry at that time. The objectives were developed for the last ten kilometres of the Kitimat River and the immediate area around the estuary and the Kitimat Arm. “The Kitimat is one of the most heavily sport fished rivers in Canada,” she said.

However, the work at that time was only provisional and there was not enough water quality monitoring to create objectives that could be approved by the assistant deputy minister.

There has been no monitoring of the Kitimat River by BC Environment since 1995. “We’ve had a lot of changes in the Kitimat region, with the closure of Methanex and Eurocan, the modernization of Rio Tinto and potential LNG facilities.”

The main designated uses for the Kitimat River at that time were aquatic life, wildlife with secondary use for fishing and recreation.

She said she wants the stakeholders to identify areas that should be monitored at first on the river and the tributaries. Later in the summer, Environment BC will ask for suggestions for the estuaries of the Upper Kitimat Arm.

Participants expressed concern that the water supply to Kitamaat Village and the Kitimat LNG site at Bish Cove as well as Hirsch Creek and other tributaries should be included in the study. Penno replied that the purpose of the meeting was to identify “intimate local knowledge” to help the study proceed.

After a decade so of cuts, the government has “only so much capacity,” Penno said, which is why the study needs the help of both Kitimat residents and industry to both design the study and to do some of the sampling.

The original sampling station in the 1980s was at the Haisla Boulevard Bridge in Kitimat. A new sampling station has been added at the “orange” Kitimat River bridge on Highway 37. There is also regular sampling and monitoring at Hirsch Creek. The aim is to add new sampling points at both upstream and downstream from discharge points on the river.

The people at the meeting emphasized the program should take into consideration the Kitimat River and all its tributaries—if budget permits.

Spring freshette

Last year, the team collected five samples in thirty days in during four weeks in May and the first week in June, “catching the rising river quite perfectly” at previously established locations, at the Haisla Bridge and upstream and downstream from the old Eurocan site as well as the new “orange bridge” on the Kitimat River.

The plan calls for five samples in thirty days during the spring freshette and the fall rain and monthly sampling in between.

The stakeholders in the meeting told the enviroment staff that the Kitimat Valley has two spring freshettes, the first in March during the valley melt and later in May during the high mountain melt.

The plan calls for continued discussions with the industry stakeholders, Kitimat residents and the Haisla Nation.

The staff also wants the industrial stakeholders to provide data to the province, some of it going back to the founding of Kitimat if a way can be found to make sure all the data is compatible. One of the industry representatives pointed out, however, that sometimes data is the hands of contractors and the hiring company may not have full control over that data.

There will be another public meeting in the summer, once plans for sampling in the Kitimat Arm are ready.

Eel grass really a flower that stores more carbon than tropical forests, genome reveals

Eel grass is not a seaweed but a flowering plant that migrated to the sea, say scientists who have now mapped the eel grass genome. The study also shows that eel grass ( Zostera marina) is crucial in absorbing carbon dioxide in the soft sediments of the coasts.

Eel grasses form a carbon dioxide sink: “they store more carbon than tropical forests,” says Jeanine Olsen of the University of Groningen in the Netherlands who led the study.

Coastal sea grass ecosystems cover some 200,000 square kilometers, the study says. Those ecosystems account for an estimated 15 per cent of carbon fixed in global ocean, and also impact sulphur and nitrogen cycles.

The scientists argue that since sea grasses are the only flowering plants to have returned to the sea that is the most extreme adaptation a terrestrial (or even freshwater) species can undergo.

The science team says the Zostera marina genome is “an exceptional resource that supports a wide range of research themes, from the adaptation of marine ecosystems under climate warming and its role in carbon burial to unraveling the mechanisms of salinity tolerance that may further inform the assisted breeding of crop plants.”

A seagrass meadow. (Christoffer Boström)
A seagrass meadow.
(Christoffer Boström)

Sea grasses form the backbone of one of the most productive and biodiverse ecosystems on Earth, rivaling coral reefs and rain forests in terms of the ecosystem services they provide to humans.

Sea grass meadows are part of the soft-sediment coastal ecosystems found in all continents, with the exception of Antarctica. They not only form a nursery for young fish and other organisms, but also protect the coastline from erosion and maintain water clarity. ‘

The study, which sequenced the genome of the eel grass taken from the Archipelago Sea off Finland. published today, in the journal Nature, is the work of an international consortium of 35 labs, most of them in Europe, working with researchers from the U.S. Department of Energy Joint Genome Institute.

The study showed that eel grasses are completely submerged marine flowering plants, called by science angiosperms. It shows that eel grass is a member of the ancient monocot family.

The monocots include about 60,000 species, flowering plants that first appear above the soil as a single leaf. They include orchids, “true grasses,” as well as rice, wheat, maize and “forage grasses” such as  sugar cane, and the bamboos. According to Wikipedia, other economically important monocot crops include  palms  bananas , gingers, onions, garlic, lilies, daffodils,  irises, amaryllis,  bluebells and tulips.

Zostera marina is the first marine flowering plant have its genome fully sequenced. As well as finding the eel grass’s genetic ancestors the researchers were interested in understanding how the plant–and by extension other plants in the ecosystem–adapt to climate change.

As it adapted to  an underwater, coastal lifestyle, eel grass gained genes that allowed it to live in saltwater but lost genes involved in traits associated with land-based plants.

Olsen called this “arguably the most extreme adaptation a terrestrial (and even a freshwater) species can undergo.”

What she describes as the “use it, lose it, or change it” scenario, eelgrass modified its cell walls. The eel grass cell wall is very different from normal plant cell walls and more like that of sea algae, similar to the cell in seaweeds. The eel grass has lost genes associated with light-sensing, pollination and regulation of internal water balance.

Eel grass lost its stomata (which are used by land plants to ‘breathe’) but also all of the genes involved in stomatal differentiation. “The genes have just gone, so there’s no way back to land for sea grass,” Olsen says. Sex is entirely underwater involving long naked sperm filaments especially adapted for underwater fertilization of the tiny flowers.

The team compared the eel grass genome to duck weed, one of the simplest flowering plants and Zostera marina’s closest sequenced relative. They noted differences in genes related to cell wall structure due to adaptations to freshwater or terrestrial conditions. For example, plants such as duckweed have seemingly lost genes that help plants retain water in the cell wall, while eel grass has regained these genes to better deal with osmotic stress at low tide.

“They have re-engineered themselves,” said Olsen of the changes affecting the eelgrass cell walls. “Crop breeders may benefit from lessons on how salt tolerance has evolved in these plants.”

Eel grass distribution. (Wikipedia Commons(
Eel grass distribution. (Wikipedia Commons(

With Zostera marina meadows stretching from Alaska to Baja California, and from the White Sea to southern Portugal, Olsen noted that these ecosystems afford researchers “a natural experiment to investigate rapid adaptation to warmer or colder waters, as well as to salinity tolerance, ocean acidification and light.”

Eel grass endangered

Jeremy Schmutz, head of the US Department of Energy’s genetic plant program, emphasized that while eel grasses are key players in coastal marine ecosystem functions and considered the “lungs of the sea,” they are also endangered. “There are estimates that nearly a third of the eel grass meadows worldwide have been destroyed by runoff into the ocean,” he said, “reducing their potential capabilities as carbon sinks. Thus, studying the adaptive capacity of eel grass is urgent to assist conservation efforts.”

An overarching question for Olsen’s team is how quickly eel grass can adapt to rapid climate change. The fact that Zostera marina grows along the coastline from Portugal to Scandinavia is being used as a natural experiment to investigate adaptation to warmer or colder water, as well as to salinity, ocean acidification and light.

Kitimat boil water advisory could last until the end of the week, District says it depends on river levels, rain

kitimatlogoThe District of Kitimat in an update on the boil water advisory says it could last until the end of the week. There is no immediate problem because the water is still being treated.

Kitimat Chief Administrative Officer Warren Waycheshen says the turbidity from the high water means that it is not possible to do a full sample on the safety of the water.   There are no delays due to the holiday weekend, the labs are open and ready, Waycheshen told Northwest Coast Energy News.

There  are no immediate dangers to Kitimat from the high water,  he said.

The District says:

October 11, 2015
The boil water advisory issued by the District of Kitimat will remain in place at this time. Until further notice, continue to boil water for 2 solid minutes before using it for cooking or drinking.

The District of Kitimat, with advice from Northern Health, will not consider terminating the advisory until two samples conclude there is not a health risk. Sampling is not expected to be complete until at least the end of the week of October 12, 2015 and could be longer if the rain continues.

The District is treating the water as usual. There is nothing to suggest contamination is occurring; however, as a precautionary measure please continue to boil water prior to use.

Turbidity in this case means high levels of particulate matter in the river, including sand and possibly salts.  Waycheshen said the Kitimat River rose four metres on Saturday, then dropped by about two metres overnight but with the later Sunday afternoon rain the river is rising once again.

The Environment Canada forecast issued at 4 pm Sunday, calls for rain for the next week.

Wind Warning continues

The Environment Canada wind warning for the north coast was continued this morning but there are currently no alerts in effect for Kitimat.

Wind warning in effect for:

North Coast – coastal sections
The third and final disturbance in this series of storms is moving onto the northern BC Coast. The front will cross the central coast tonight. Southeast winds up to 110 km/h will develop over Haida Gwaii near noon then spread to the North Coast – Coastal Sections and Central Coast – Coastal Sections this afternoon. Winds will shift to southwest with the passage of the front then diminish this evening.

Damage to buildings, such as to roof shingles and windows, may occur. High winds may toss loose objects or cause tree branches to break.

Wind warnings are issued when there is a significant risk of damaging winds.

Radley Park

Waycheshen says there probably has been some flood damage to Radley Park, but at this point  District staff are unable to get into the area to assess the damage.

“Very low levels” of Exxon Valdez oil threaten salmon and herring survival 25 years later

“Very low levels” of crude oil from the 1989 Exxon Valdez spill in Prince William Sound, Alaska, are a threat to the survival of herring and pink salmon that spawn in the region, according to a study released today by the US National Oceanic and Atmospheric Administration.

The study shows that embryonic salmon and herring exposed to very low levels of crude oil can develop hidden heart defects that compromise their later survival.

That means that the Exxon Valdez spill on March 24, 1989 may have had much greater impacts on spawning fish than previously recognized, according to the study published in  Nature’s online journal  Scientific Reports Very low embyronic crude oil exposures cause lasting defects in salmon and herring.

“These juvenile fish on the outside look completely normal, but their hearts are not functioning properly and that translates directly into reduced swimming ability and reduced survival,” said John Incardona, a research toxicologist at NOAA Fisheries’ Northwest Fisheries Science Center (NWFSC) in Seattle. “In terms of impacts to shore-spawning fish, the oil spill likely had a much bigger footprint than anyone realized.”

This is a juvenile pink salmon exposed to low levels of crude oil as an embryo. While these fish appear outwardly normal, they nevertheless developed heart defects that compromised their ability to swim. Fish that are less able to forage and avoid predators are much less likely to survive to adulthood. (NOAA)
This is a juvenile pink salmon exposed to low levels of crude oil as an embryo. While these fish appear outwardly normal, they nevertheless developed heart defects that compromised their ability to swim. Fish that are less able to forage and avoid predators are much less likely to survive to adulthood. (NOAA)

Previous research has shown that crude oil disrupts the contraction of the fish heart muscle cells. Embryonic fish exposed to trace levels of crude oil grow into juveniles with abnormal hearts and reduced cardiorespiratory function.

“With this very early impact on the heart, you end up with an animal that just can’t pump blood through its body as well, which means it can’t swim as well to capture food, form schools, or migrate,” said Mark Carls, toxicologist at the Alaska Fisheries Science Center. “Crude oil is changing basic physiology, or what makes a fish a fish.”

The research builds on earlier work by the Auke Bay Laboratories, part of NOAA Fisheries’ Alaska Fisheries Science Center, which found much reduced survival of pink salmon exposed as embryos to polycyclic aromatic hydrocarbons (PAH) from crude oil.

“Our findings are changing the picture in terms of assessing the risk and the potential impacts of oil spills,” said Nat Scholz, leader of the NWFSC’s ecotoxicology program and a coauthor of the new study. “We now know the developing fish heart is exquisitely sensitive to crude oil toxicity, and that subtle changes in heart formation can have delayed but important consequences for first-year survival, which in turn determines the long-term abundance of wild fish populations.”

The Exxon Valdez aground on Bligh Reef in Prince William Sound in May 1989. (NOAA)
The Exxon Valdez aground on Bligh Reef in Prince William Sound in March 1989. (NOAA)

The Exxon Valdez spill was the largest in U.S. history, with extensive oiling of shoreline spawning habitats for Pacific herring and pink salmon, the two most important commercial fish species in Prince William Sound.

Herring larvae sampled in proximity to oil were visibly abnormal, and mortality rates were higher for pink salmon embryos at oil spill sites than unaffected regions.

The herring fishery collapsed three to four years after the spill, when the herring spawned in oiled areas reached reproductive maturity.

The paper notes that the contribution of the spill to the herring population collapse, if any, was never determined and remains controversial.

Other studies, however, tend to confirm the findings, including heart problems for fish exposed to the Gulf of Mexico Deepwater Horizon spill and even fish exposed to naturally occurring oil seeps.

Oil spill caused unexpected lethal impact on herring, study shows

Gulf oil spill caused heart defects in fish embryos new study finds

The new findings suggest that the delayed effects of the spill may have been important contributors to the declines.

 This image shows transient embryonic exposures to crude oil cause lasting reductions in the swimming speed of salmon and herring, months after additional juvenile growth in clean seawater. (NOAA)

This image shows transient embryonic exposures to crude oil cause lasting reductions in the swimming speed of salmon and herring, months after additional juvenile growth in clean seawater. (NOAA)

Scientists from the Northwest Fisheries Science Center and Alaska Fisheries Science Center temporarily exposed embryonic salmon and herring to low levels of crude oil from the North Slope of Alaska and found that both absorbed chemicals at similar concentrations in their tissues. The embryos were then transferred to clean seawater and raised as juvenile fish for seven to eight months.

Few of the exposed embryos were outwardly abnormal in any way. However, closer examination of the fish revealed subtle defects that could reduce their long-term survival.

Juvenile salmon exposed to oil grew more slowly, with those exposed to the highest concentrations growing the slowest. For salmon, early survival in the ocean is strongly influenced by juvenile growth, with smaller fish suffering higher loss to predators.

Scientists used swimming speed as a measure of cardiorespiratory performance and found that fish exposed to the highest concentrations of oil swam the slowest. Slower swimming is an indication of reduced aerobic capacity and cardiac output, and likely makes fish easier targets for predators.

Exposure to oil as embryos altered the structural development of the hearts of juvenile fish, potentially reducing their fitness and swimming ability. Poor swimming and cardiac fitness is also a factor in disease resistance.

Earlier studies on the ecosystem-scale crash of the Prince William Sound herring population  several years after the Exxon Valdez spill were based on higher levels of exposure to the oil. The new study shows that that cardiac injury occurs in normal-appearing fish that survive even lower level exposures.

The scientists reviewed data on measured oil concentrations in surface water samples collected in Prince William Sound after the oil spill and during the 1989 herring spawning season. Most of the 233 samples contained less oil than was believed to be toxic to herring at the time, based on visible gross developmental abnormalities. However, nearly all of the samples contained oil at or above concentrations shown in the new study to alter heart development.

If the Exxon Valdez spill impacted heart development among a large majority of fish that were spawned in proximity to oiled shorelines, the subsequent losses of juveniles to delayed mortality would have left fewer adults to join the population. Although not direct proof, this provides a plausible explanation for the collapse of the Prince William Sound herring stock four years later, when fish spawned during the oil spill would have matured.

The study concludes that the impacts of the Exxon Valdez spill on near shore spawning populations of fish are likely to have been considerably underestimated in terms of both the geographic extent of affected habitat and the lingering toxicity of low levels of oil. The findings will likely contribute to more accurate assessments of the impacts of future oil spills, Incardona said. “Now we have a much better idea of what we should be looking for,” he said.

That means, according to the study “that the impacts of the Exxon Valdez oil spill on populations of near shore spawning fish are likely to have been considerably underestimated, in term of both the geographic extent of affected habitats and the lingering toxicity of low levels of residual oil.”

The report calls for more studies of the sensitivity of the developing fish heart since the vulnerability “also has implications for other pollution sources in marine ecosystems, including increasing maritime vessel traffic and expanding land-based urban runoff.”

In 2013, the Northern Gateway Joint Review panel said this about the Exxon Valdez  oil spill.

Scientific studies after the Exxon Valdez spill indicated that the vast majority of species recovered following the spill and that functioning ecosystems, similar to those existing pre-spill, were established.

Species for which recovery is not fully apparent, such as Pacific herring, killer whales, and pigeon guillemots, appear to have been affected by other environmental factors or human influences not associated with the oil spill. Insufficient pre-spill baseline data on these species contributed to difficulties in determining the extent of spill effects.

Based on the evidence, the Panel finds that natural recovery of the aquatic environment after an oil spill is likely to be the primary recovery mechanism, particularly for marine spills. Both freshwater and marine ecosystem recovery is further mitigated where cleanup is possible, effective, and beneficial to the environment.

Natural processes that degrade oil would begin immediately following a spill. Although residual oil could remain buried in sediments for years, the Panel finds that toxicity associated with that oil would decline over time and would not cause widespread, long-term impacts.

Related

25th anniversary of Exxon Valdez disaster looms over Northern Gateway dispute

Dilbit dangerous to young fish, laboratory study shows

Diluted bitumen, also known as dilbit, a mixture of oil sands bitumen and natural gas dilutants can seriously harm fish populations, according to research study at Queen’s University and the Royal Military College of Canada published this week.

At toxic concentrations, effects of dilbit on exposed fish included deformities and clear signs of genetic and physiological stress at hatch, plus abnormal or uninflated swim bladders, an internal gas-filled organ that allows fish to control their buoyancy. Exposure to dilbit reduces their rate of survival by impairing their ability to feed and to avoid predators.

Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois' lab. (Queen's University)
Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois’ lab. (Queen’s University)

Among the other findings from the study were

    • Embryo toxicity of dilbit was comparable to that of conventional oils.
    • Developmental malformations increased with increasing dilbit concentrations.
    • Chemical dispersion broadened the genotoxic effects of dilbit

“This new study provides a clearer perspective on the potential risks to Canada’s aquatic resources of dilbit spills, and a technical basis for decisions on dilbit transportation within Canada,” says Peter Hodson Environment Studies, Biology at Queens. “It reduces some of the uncertainty and unknowns about the hazards of dilbit.”

This study characterized the toxicity and physiological effects of unweathered diluted bitumen (Access Western Blend dilbit; AWB) to a fish used for laboratory studies. Embryos of Japanese medaka (Oryzias latipes) were exposed for 17 days to dilutions of dilbit physically-dispersed by water and chemically-dispersed by dispersants

AWB dilbit exposure was not lethal to medaka, but resulted in a high prevalence of blue sac disease (BSD), impaired development, and abnormal or un-inflated swim bladders. Blue sac is a disease of young trout and other salmonid species; usually caused by unsuitable hatchery water. It turns the yolk sac bluish and is thought to be caused by a lack of oxygen.

The research was funded by Fisheries and Oceans Canada’s National Contaminants Advisory Group and the next stage will determine whether fish species native to Canada will be affected by dilbit exposure. The work also includes the development of genetic markers of exposure to dilbit and toxicity that could be used to assess whether wild fish that survive a spill are still affected.

The research team includes Dr. Valérie Langlois (Environmental Studies, Royal Military College of Canada) and Dr. Barry Madison (Royal Military College of Canada).

Dr. Hodson is also a member of a Queen’s research team tasked to determine whether dilbit spilled into rivers would contaminate bed sediments, specifically areas where fish such as salmon, trout, chars, whitefish and graylings spawn, to the extent that the survival of their embryos would be affected.

The research was published in ScienceDirect and is one of the first studies of dilbit on young fish.

The finding could be significant because both the proposed Northern Gateway pipeline and the proposed Kinder Morgan expansion will cross areas near spawning streams.

Chevron applies to update permit to discharge storm water to Bish Cove and Douglas Channel

Chevron LogoChevron has applied to the BC Ministry of the Environment for a permit to discharge storm water from the liquified natural gas construction site at Bish Cove and along the shore of Douglas Channel.

The construction site is currently operating on a Waste Water Discharge Approval that expires on Oct. 31.

Map of Bish Cove
Map showing construction areas at the Kitimat LNG site at Bish Cove likely to discharge storm water into the Douglas Channel. (Chevron/ McElhanney Consulting)

 

The application sets new objectives that “will be protective of the receiving environment.” Various construction areas will discharge storm water (likely due to clearing of the bush cover) from areas at Bish Cove itself and the Bish Creek watershed “including the following watercourses and associated tributaries: Bish Creek, West Creek, Skoda Creek and Renegade Creek.”

The application says that the “maximum rate of effluent discharged from this project and support areas will vary based upon seasons and weather.” Areas and amounts of water may change as the construction proceeds. “The characteristics of the stormwater runoff will be water produced from precipitation, including snowmelt that contains suspended sediment from earthworks and construction.” The application adds, “The types of treatment to be applied to the discharges are: erosion prevention and sedimentation control management practices and devices which may include sedimentation ponds, oil water separators, pH adjustment, flocculent  addition and sand filtration.

The public and concerned individuals or groups can provide “relevant information” to the Regional Manager, Environmental Protection, #325-1011 Fourth Ave, Prince George BC V2L 3H9 until September 20, 2014 or call Marc Douglas at 844-800-0900.

Rio Tinto donates $19 million Pebble Mine stake to charity: Financial Times

Britain’s Financial Times is reporting that Rio Tinto has donated its stake in Alaska’s controversial Pebble Mine to two Alaska charities, one run by a local First Nation.

Rio Tinto donates Alaska copper mine stake to charities  (registration/subscription required)

Rio Tinto had a 19 per cent stake in Northern Dynasty, a Vancouver-based mining company whose main asset is the Pebble project in Alaska.

The FT reports that Pebble is one of the world’s largest known undeveloped copper resources. The project is mired in disagreement because of concern over its potential effect on salmon stocks.

The FT report says the US Environmental Protection Agency said that it would investigate whether fisheries in the region could be protected. The EPA investigation stops any award of environmental permits for the mine in the meantime, and could lead to a permanent block on the project by the EPA.

According to the report, Rio Tinto said it would donate its shares in Northern Dynasty – worth about $19 million Canadian – to two charitable foundations in Alaska: the Alaska Community Foundation, which funds educational and vocational training, and the Bristol Bay Native Corporation Education Foundation, which supports educational and cultural programmes in the region.

The Pebble Mine would be near rich salmon rivers which flow into Bristol Bay, Alaska. Opponents of the project fear that the giant mine would irreversibly damage salmon stocks for centuries to come.

Related:

Pension funds pressure Rio Tinto to dump out of controversial Alaska Pebble Mine

Kitimat Votes: 25th anniversary of Exxon Valdez disaster looms over Northern Gateway plebiscite

On March 24, 1989, the tanker Exxon Valdez plowed into Bligh Reef in Alaska’s Prince William Sound,  spilling 260,000 to 750,000 barrels or 41,000 to 119,000 cubic metres of crude oil.

That was 25 years ago. The media loves anniversary stories and the Exxon Valdez look-backs and updates are already ramping up—right in the middle of the Kitimat plebiscite on the Northern Gateway pipeline and terminal project.

The hashtag #ExxonValdez25 is beginning to trend, based on a Twitter chat for Monday sponsored by the US National Oceanic and Atmospheric Administration.

The voters of Kitimat who will have to cast their ballots on the Joint Review Panel’s interpretation of the Northern Gateway proposal will find once again that the JRP tilted toward the industry and downplayed the lingering risks from a major tanker disaster—and that means neither the pro nor the anti side can be happy with the events that will be marked on March 24, 2014.

The Exxon Valdez accident is part of the Joint Review Panel findings that the economic benefits of Northern Gateway outweigh the risks. The JRP generally accepted the industry position, taken by both Northern Gateway and by ExxonMobil that Prince William Sound has recovered from the Exxon Valdez incident, something that is fiercely debated and disputed.

One area that is not in dispute is that the Exxon Valez disaster brought laws that forced energy companies to use double-hulled tankers.  However, commercials that indicate that Northern Gateway will be using double-hulled tankers because the company respects the BC coast is pushing things a bit far, since those tankers are required by law.

Northern Gateway told the Joint Reivew Panel that

on a worldwide basis, all data sets show a steady reduction in the number
and size of oil spills since the 1970s. This decline has been even more apparent since regulatory changes in 1990 following the Exxon Valdez oil spill, which required a phase-in of double-hulled tankers in the international fleet. No double-hulled tanker has sunk since 1990. There have been five incidents of double-hulled tankers that have had a collision or grounding that penetrated the cargo tanks. Resulting spills ranged from 700 to 2500 tonnes

The Haisla countered by saying:

The Haisla Nation said that, although there have been no major spills since the Exxon Valdez spill in Prince William Sound, there were 111 reported incidents involving tanker traffic in Prince William Sound between 1997 and 2007. The three most common types of incidents were equipment malfunctions, problems with propulsion, steering, or engine function, and very small spills from tankers at berth at the marine terminal. The Haisla Nation said that, in the absence of state-of-the-art prevention systems in Prince William Sound, any one of those incidents could have resulted in major vessel casualties or oil spills.

 

Related: What the Joint Review Panel said about the Exxon Valdez disaster

A local daily newspaper, The Anchorage Daily News sums it all up:

The herring of Prince William Sound still have not recovered. Neither have killer whales, and legal issues remain unresolved a quarter of a century later. Monday is the 25th anniversary of the disaster, in which the tanker Exxon Valdez ran aground on Bligh Reef and spilled at least 11 million gallons of oil into the pristine waters of the sound.

Prince William Sound today looks spectacular, a stunning landscape of mountainous fjords, blue-green waters and thickly forested islands. Pick up a stone on a rocky beach, maybe dig a little, though, and it is possible to still find pockets of oil.

“I think the big surprise for all of us who have worked on this thing for the last 25 years has been the continued presence of relatively fresh oil,” said Gary Shigenaka, a marine biologist for the National Oceanic and Atmospheric Administration.

Britain’s Sunday Telegraph headlined: Exxon Valdez – 25 years after the Alaska oil spill, the court battle continues

The legal dispute over the spill is still ongoing, with the Telegraph’s Joanna Walters noting:

[S]tate senator Berta Gardner is pushing for Alaskan politicians to demand that the US government forces ExxonMobil Corporation to pay up a final $92 million (£57 million), in what has become the longest-running environmental court case in history. The money would primarily be spent on addressing the crippled herring numbers and the oiled beaches.
“There’s still damage from the spill. The oil on the beaches is toxic and hurting wildlife. We can’t just say we’ve done what we can and it’s all over – especially with drilling anticipated offshore in the Arctic Ocean – this is significant for Alaska and people around the world,” she told The Telegraph.

An ExxonMobil spokesman then told The Telegraph, the energy sector’s standard response:

Richard Keil, a senior media relations adviser at ExxonMobil, said: “The overwhelming consensus of peer-reviewed scientific papers is that Prince William Sound has recovered and the ecosystem is healthy and thriving.”
But federal scientists estimate that between 16,000 and 21,000 gallons of oil from the spill lingers on beaches in Prince William Sound and up to 450 miles away, some of it no more biodegraded than it was at the time of the disaster.

The Sunday Telegraph chronicles which species have recovered in Exxon Valdez: Animal populations in Prince William Sound, Alaska

Overall, the Exxon Valdez disaster was, as US National Public Radio reported, a spur to science. But NPR’s conclusion is the exact opposite of that from the Northern Gateway Joint Review Panel—at least when it comes to fish embryos.

Why The Exxon Valdez Spill Was A Eureka Moment For Science

Twenty-five years of research following the Exxon Valdez disaster has led to some startling conclusions about the persistent effects of spilled oil.
When the tanker leaked millions of gallons of the Alaskan coast, scientists predicted major environmental damage, but they expected those effects to be short lived. Instead, they’ve stretched out for many years.
What researchers learned as they puzzled through the reasons for the delayed recovery fundamentally changed the way scientists view oil spills. One of their most surprising discoveries was that long-lasting components of oil thought to be benign turned out to cause chronic damage to fish hearts when fish were exposed to tiny concentrations of the compounds as embryos.

(NPR also reports on the The Lingering Legacy Of The Exxon Valdez Oil Spill)

It seems that some species recovered better than others from the oilspill.

For example, the recovery of the sea otter population has received widespread media coverage, but with widely divergent points of view. The more conservative and pro-industry writers point to the recovery of the otter population, while environmental coverage stresses the quarter century it took for the otter population to rebound.

Scientific American online and other media outlets reported 25 Years after Exxon Valdez Spill, Sea Otters Recovered in Alaska’s Prince William Sound quoting a report from the U.S. Geological Survey that said that spill killed 40 percent of the 6,500 sea otters living in the sound and more in 1990 and 1991.USGS reported that the main sea otter population in the sound was 4,277 in 2013.

Although recovery timelines varied widely among species, our work shows that recovery of species vulnerable to long-term effects of oil spills can take decades,” said lead author of the study, Brenda Ballachey, research biologist with the U.S. Geological Survey. “For sea otters, we began to see signs of recovery in the years leading up to 2009, two decades after the spill, and the most recent results from 2011 to 2013 are consistent with recovery

The Joint Review Panel generally accepted Northern Gateway’s and the energy industry’s evidence on the Exxon Valdez incident and concluded

The Panel’s finding regarding ecosystem recovery following a large spill is based on extensive scientific evidence filed by many parties, including information on recovery of the environment from large past spill events such as the Exxon Valdez oil spill. The Panel notes that different parties sometimes referred to the same studies on environmental recovery after oil spills, and drew different conclusions.

In its consideration of natural recovery of the environment, the Panel focused on effects that are more readily measurable such as population level impacts, harvest levels, or established environmental quality criteria such as water and sediment quality criteria.

The Panel finds that the evidence indicates that ecosystems will recover over time after a spill and that the post-spill ecosystem will share functional attributes of the pre-spill one. Postspill ecosystems may not be identical to pre-spill ecosystems. Certain ecosystem components may continue to show effects, and residual oil may remain in some locations. In certain unlikely circumstances, the Panel finds that a localized population or species could potentially be permanently affected by an oil spill.

Scientific studies after the Exxon Valdez spill indicated that the vast majority of species recovered following the spill and that functioning ecosystems, similar to those existing pre-spill, were established.
Species for which recovery is not fully apparent, such as Pacific herring, killer whales, and pigeon guillemots, appear to have been affected by other environmental factors or human influences not associated with the oil spill. Insufficient pre-spill baseline data on these species contributed to difficulties in determining the extent of spill effects.

Based on the evidence, the Panel finds that natural recovery of the aquatic environment after an oil spill is likely to be the primary recovery mechanism, particularly for marine spills. Both freshwater and marine ecosystem recovery is further mitigated where cleanup is possible, effective, and beneficial to the environment.

Natural processes that degrade oil would begin immediately following a spill. Although residual oil could remain buried in sediments for years, the Panel finds that toxicity associated with that oil would decline over time and would not cause widespread, long-term impacts.

The Panel finds that Northern Gateway’s commitment to use human interventions, including available spill response technologies, would mitigate spill impacts to ecosystems and assist in species recovery..

It is clear, however, from the local coverage in Alaska and from the attention of the world’s media that Prince William Sound has not fully recovered from the Exxon Valdez incident (it may yet in who knows how many years). Anger and bitterness still remains among the residents of Alaska, especially since the court cases are dragging on after a quarter century.

Those are the kinds of issues that Kitimat residents will face when they vote in the plebiscite on April 12. Just who do the people of Kitimat believe, those who say the chances for a spill are remote and the environment and the economy will quickly recover? It probably depends on whether or not you consider 25 years quick. Twenty-five years is quick in geological time but it is a third or a half of a human life time.

As for the residents of Kitamaat Village, and probably many people in Kitimat, Haisla Chief Counsellor Ellis Ross summed it up in a Facebook posting on Sunday

If this happens in Kitamaat, all those campaigning for Enbridge will pack up and leave for another coastline to foul. Haisla don’t have much of a choice. We would have to stay and watch the court battles on who should pay what.

Ross is right. Whether it’s Prince William Sound or Douglas Channel, the people who live the region are stuck with the mess while the big companies walk away and the lawyers get rich.

 

Anniversary stories (as of March 23, 2000 PT)

Alaska Media

Valdez Star
First Associated Press story on Exxon Valdez Oil Spill reprinted

KTUU

Exxon Valdez Oil Spill 25th Anniversary: Alaskans Remember

Alaska Dispatch

Exxon Valdez oil lingers on Prince William Sound beaches; experts debate whether to clean it up

While Alaska’s Prince William Sound is safer, questions linger about preventing oil spills

Recalling the shock and sadness of Exxon Valdez spill 25 years ago

How the Exxon Valdez spill gave birth to modern oil spill prevention plans

Seward City News
25 years later Exxon Valdez memories still stink

Bristol Bay Times
Exxon lesson: Prevention, RCACs the key to avoiding future disaster

Anchorage Daily News
Red Light to Starboard: Recalling the Exxon Valdez Disaster

Exxon Valdez photogallery

25 years later, oil spilled from Exxon Valdez still clings to lives, Alaska habitat

 

World Media
Al Jazeera
The legacy of Exxon Valdez spill
The tanker ran aground 25 years, but the accident continues to harm the environment and human health

Vancouver Sun
Opinion: Oil spills — the 10 lessons we must learn Reality check: Next incident would ruin coastal economy

Seattle Times

Promises broken by the Exxon Valdez oil spill, 25 years later

SFGate

25 years since the Exxon Valdez spill

CNN
After 25 years, Exxon Valdez oil spill hasn’t ended

Canadian scientists propose nine step program to save waterways and fish

 

John Richardson
Tomorrow’s clean water depends on nine guiding principles, says UBC Forestry Prof. John Richardson. (Martin Dee/UBC)

A group of biologists from across Canada have proposed a nine step program to sustain healthy waterways and fisheries not only in this country but around the world.

The key to clean waterways and sustainable fisheries is for the management plan to follow nine guiding principles of ecological water management, according to John Richardson, a professor in the Dept. of Forest and Conservation Sciences at the University of British Columbia, one of 15 freshwater biologists who created the framework to help protect fish and ecosystems into the future.

Fish habitats need waterways that are rich in food with places to hide from predators and lay eggs, according to the framework published on January 31 in the journal Environmental Reviews.
“Fish are strongly impacted when nutrients, sediments or pollutants are added to their habitat. We cannot protect fish without maintaining a healthy freshwater ecosystem,” Richardson,who led the policy section on protecting fish habitats, said in a UBC news release. Other policy sections addressed areas such as climate change and biodiversity.

Read the complete paper on the Environmental Reviews site.

Humans have put key waterways at risk because of land development and the loss of the vegetation along rivers and streams, Richardson said, adding connecting waterways are also critical for healthy ecosystems. “If fish can’t get to breeding or rearing areas because of dams, culverts, water intakes or other changes to their habitats, then the population will not survive,” he said.

With more pressure on Canada’s waterways, Richardson and his colleagues wanted to create a framework of evidence-based principles that managers, policy makers and others could easily use in their work. “It’s a made in Canada solution, but the principles could be applied anywhere in the world,” he said.

The paper says:

Freshwater ecosystems are among the most imperiled on Earth with extinction rates of freshwater fauna higher than for many other ecosystems and vastly exceeding historic background rates/ Freshwater is vital to humans, and clean water is rapidly becoming a limiting resource for many societies. The greatest threat to freshwater ecosystems is the loss or alteration of freshwater habitats through human development yet our societies and economy depend directly on the services provided by healthy freshwater ecosystems.

It also notes:

Most ecosystem services of fishes are supported by a diverse fauna, not by merely the few species directly favoured by humans. Humans live side-by-side with fishes and other aquatic organisms in watersheds, and we derive our quality of life from the health of these ecosystems.

The paper, which was supported in part by federal government financing, only touches on the controversy over the gutting of the environmental protection for Canadian waterways by the Harper government. It goes on to stay that the protests are not enough and more is needed:

Recent changes to Canadian fisheries policies have motivated responses by the public and the scientific community yet a broad contemporary scientific assessment of what is required to manage freshwater fisheries resources is lacking. A template of the core ecological concepts underlying sound fisheries policies, based on the best available science will support policy and management decisions and the design of monitoring programs to evaluate the success of these actions.

With more pressure on Canada’s freshwater ecosystems, Richardson and his colleagues wanted to create a framework of evidence-based principles that managers, policy makers and others could easily use in their work. “It’s a made in Canada solution, but the principles could be applied anywhere in the world,” he says.

Healthy freshwater ecosystems are shrinking and reports suggest that the animals that depend on them are becoming endangered or extinct at higher rates than marine or terrestrial species, says Richardson. Humans also depend on these ecosystems for basic resources like clean drinking water and food as well as economic activity from the natural resource sector, tourism and more.

The components of a successful management plan include:

  • Protect and restore habitats for fisheries
  • Protect biodiversity as it enhances resilience and productivity
  • Identify threats to ecosystem productivity
  • Identify all contributions made by aquatic ecosystems
  • Implement ecosystem based-management of natural resources while acknowledging the impact of humans
  • Adopt a precautionary approach to management as we face uncertainty
  • Embrace adaptive management – environments continue to change so research needs to be ongoing for scientific evidence-based decision making
  • Define metrics that will indicate whether management plans are successful or failing
  • Engage and consult with stakeholders
  • Ensure that decision-makers have the capacity, legislation and authority to implement policies and management plans.

These recommendations are based on nine principles of ecology:

  • Acknowledge the physical and chemical limits of an ecosystem
  • Population dynamics are at work and there needs to be a minimum number of fish for the population to survive
  • Habitat quantity and quality are needed for fish productivity
  • Connecting habitats is essential for movement of fish and their resources
  • The success of freshwater species is influenced by the watershed
  • Biodiversity enhances ecosystem resilience and productivity
  • Global climate change affects local populations of fish
  • Human impacts to the habitat affect future generations of fish
  • Evolution is important to species survival