Eel grass is not a seaweed but a flowering plant that migrated to the sea, say scientists who have now mapped the eel grass genome. The study also shows that eel grass ( Zostera marina) is crucial in absorbing carbon dioxide in the soft sediments of the coasts.
Eel grasses form a carbon dioxide sink: “they store more carbon than tropical forests,” says Jeanine Olsen of the University of Groningen in the Netherlands who led the study.
Coastal sea grass ecosystems cover some 200,000 square kilometers, the study says. Those ecosystems account for an estimated 15 per cent of carbon fixed in global ocean, and also impact sulphur and nitrogen cycles.
The scientists argue that since sea grasses are the only flowering plants to have returned to the sea that is the most extreme adaptation a terrestrial (or even freshwater) species can undergo.
The science team says the Zostera marina genome is “an exceptional resource that supports a wide range of research themes, from the adaptation of marine ecosystems under climate warming and its role in carbon burial to unraveling the mechanisms of salinity tolerance that may further inform the assisted breeding of crop plants.”
Sea grasses form the backbone of one of the most productive and biodiverse ecosystems on Earth, rivaling coral reefs and rain forests in terms of the ecosystem services they provide to humans.
Sea grass meadows are part of the soft-sediment coastal ecosystems found in all continents, with the exception of Antarctica. They not only form a nursery for young fish and other organisms, but also protect the coastline from erosion and maintain water clarity. ‘
The study, which sequenced the genome of the eel grass taken from the Archipelago Sea off Finland. published today, in the journal Nature, is the work of an international consortium of 35 labs, most of them in Europe, working with researchers from the U.S. Department of Energy Joint Genome Institute.
The study showed that eel grasses are completely submerged marine flowering plants, called by science angiosperms. It shows that eel grass is a member of the ancient monocot family.
The monocots include about 60,000 species, flowering plants that first appear above the soil as a single leaf. They include orchids, “true grasses,” as well as rice, wheat, maize and “forage grasses” such as sugar cane, and the bamboos. According to Wikipedia, other economically important monocot crops include palms bananas , gingers, onions, garlic, lilies, daffodils, irises, amaryllis, bluebells and tulips.
Zostera marina is the first marine flowering plant have its genome fully sequenced. As well as finding the eel grass’s genetic ancestors the researchers were interested in understanding how the plant–and by extension other plants in the ecosystem–adapt to climate change.
As it adapted to an underwater, coastal lifestyle, eel grass gained genes that allowed it to live in saltwater but lost genes involved in traits associated with land-based plants.
Olsen called this “arguably the most extreme adaptation a terrestrial (and even a freshwater) species can undergo.”
What she describes as the “use it, lose it, or change it” scenario, eelgrass modified its cell walls. The eel grass cell wall is very different from normal plant cell walls and more like that of sea algae, similar to the cell in seaweeds. The eel grass has lost genes associated with light-sensing, pollination and regulation of internal water balance.
Eel grass lost its stomata (which are used by land plants to ‘breathe’) but also all of the genes involved in stomatal differentiation. “The genes have just gone, so there’s no way back to land for sea grass,” Olsen says. Sex is entirely underwater involving long naked sperm filaments especially adapted for underwater fertilization of the tiny flowers.
The team compared the eel grass genome to duck weed, one of the simplest flowering plants and Zostera marina’s closest sequenced relative. They noted differences in genes related to cell wall structure due to adaptations to freshwater or terrestrial conditions. For example, plants such as duckweed have seemingly lost genes that help plants retain water in the cell wall, while eel grass has regained these genes to better deal with osmotic stress at low tide.
“They have re-engineered themselves,” said Olsen of the changes affecting the eelgrass cell walls. “Crop breeders may benefit from lessons on how salt tolerance has evolved in these plants.”
With Zostera marina meadows stretching from Alaska to Baja California, and from the White Sea to southern Portugal, Olsen noted that these ecosystems afford researchers “a natural experiment to investigate rapid adaptation to warmer or colder waters, as well as to salinity tolerance, ocean acidification and light.”
Eel grass endangered
Jeremy Schmutz, head of the US Department of Energy’s genetic plant program, emphasized that while eel grasses are key players in coastal marine ecosystem functions and considered the “lungs of the sea,” they are also endangered. “There are estimates that nearly a third of the eel grass meadows worldwide have been destroyed by runoff into the ocean,” he said, “reducing their potential capabilities as carbon sinks. Thus, studying the adaptive capacity of eel grass is urgent to assist conservation efforts.”
An overarching question for Olsen’s team is how quickly eel grass can adapt to rapid climate change. The fact that Zostera marina grows along the coastline from Portugal to Scandinavia is being used as a natural experiment to investigate adaptation to warmer or colder water, as well as to salinity, ocean acidification and light.
That’s one of the predictions from a new study from the University of British Columbia, looking at the future of the fishery on the coast.
The study concentrates on the First Nations fishery and warns that aboriginal people could face a catastrophic decline in the harvest of traditional species, especially salmon and herring roe on kelp over the next thirty years, a decline that will also have an equally devastating effect on commercial and recreational fishing.
The main cause of the decline is climate change and the warming of the coastal waters. The study projected “modest to severe declines in catch potential” for all current commercial fisheries along the coast.
The study says that for the First Nations the between $28 million to $36 million in revenue they got from fishing between 2001 and 2010 could fall by up to 90 per cent depending on how the climate changes.
One scenario calls for a decline of up to 40 per cent in chinook and pink salmon.
If there is any good news, if you can call it that, the decline will be not as bad in northern coastal waters as it will be the warmer waters near the Lower Mainland and southern Vancouver Island. The range of some species, including salmon, herring, halibut and possibly oolichan will move to farther north along the BC Coast and into Alaskan waters.
That means in time the warming waters will also encourage an increase in other species, including sardines and some clams.
The changing oceans mean that “an increase in the relative abundance of warmer-water species was projected to lead to new or increased opportunities for commercial harvests by 2050.”
The study is urging the First Nations and other stakeholders in the British Columbia fishery to start long term planning immediately to anticipate changes in the coming decades.
The team of scientists led by Lauren Weatherdon, a graduate student at UBC, noted that while previous studies have looked at the impact of climate change on large-scale commercial fisheries, “few efforts have been made to quantitatively project impacts on small-scale subsistence and commercial fisheries that are economically, socially and culturally important to many coastal communities.”
The study was conducted in cooperation with the BC First Nations Fisheries Council and looked its seven coastal administrative regions “forming a sample of groups with diverse marine resources, geographical locations, territorial sizes, and treaty statuses.”
Within those regions 16 First Nations participated in the study, some under their treaty councils, including the Council of the Haida Nation, the Tsimshian Nations Treaty Society (including the Gitga’at at Hartley Bay and the Kitselas and Kitsumkalum near Terrace) and the Maa-nulth First Nations. The Heiltsuk First Nation at Bella Bella participated as an independent group.
The FNFC’s administrative regions intersect with five distinct ecological regions: the North Coast, comprising the Hecate Strait and Dixon Entrance; Haida Gwaii, which includes the waters surrounding the islands; the Central Coast, including Queen Charlotte Sound, Queen Charlotte Strait, and the southern tip of Hecate Strait; the Strait of Georgia; and the west coast of Vancouver Island (WCVI) .
The study says First Nations are likely to be exposed to different climate-related impacts on fisheries due to the differing ecological and biogeographical characteristics of these regions and to differing traditional and commercial harvests.
The study used a “dynamic bioclimate envelope” computer model to look at the changes to the distribution and relative abundances of the BC coastal species under two climate change scenarios, a high greenhouse gas model where society can’t curb emissions and a low greenhouse gas emission scenarios, depending on how society is able to curb the increase.
The study looked at ocean properties—including sea surface temperature, sea bottom temperature, salinity, oxygen concentration, surface action, and net primary production—using data from the US National Ocean and Atmospheric Administrations’ climate-related earth system model.
Climate change will mean that current species on the BC coast will “shift polewards.”
The study showed that by 2050, there could be declines in 87 of the 98 species in the study.
Greater losses in what the study calls “species richness” is likely to occur towards the southern coast of British Columbia, falling primarily between 48°N and 51°N. But, overall, species richness along coastal BC will continue—only with different species.
Most significantly the study projects a decline in the overall salmon catch from 17.1 per cent to 29.2 per cent, depending on the region and climate.
All aspects of the herring fishery, including roe herring, spawn-on-kelp, and the food and bait fishery could decline between 28.1 per cent and 49.2 per cent depending on the region.
The future of the oolichan is the most uncertain. One of the models studied projected a further 37.1 per cent decline in the oolichan, while other models called for for a decline between 5 per cent and 6.8 per cent. That will depend on how well, the oolichan already threatened in most regions of British Columbia are able to adapt to warmer waters or find a way to move their range northward.
The study says white sturgeon and Pacific sardines were projected to increase in abundance under both climate change scenarios, while manila clams were projected to increase in abundance by 14.5 per cent in one of the models. The eight remaining species showed little change.
The study suggests that the southern territories (Tsawwassen, Tla’amin, and Maa-nulth First Nations) will likely see a reduction in catch potential between -15.2 per cent and -27.8 per cent depending on how the climate changes.
On the north coast. The Haida and Tsimshian First Nations and those situated along the central or north-eastern coasts of Vancouver Island (Heiltsuk and ‘Namgis First Nations) would likely see smaller reductions in relative catch for each territory, with estimates falling between -3.2 per cent and -8.2 per cent.
The study shows that for the First Nations along the North and Central Coasts of British Columbia (Gitga’at and Haida, and Heiltsuk and ‘Namgis) there will be neutral or positive shifts in catch potential for white sturgeon, kelp greenling, and two species of perch under both scenarios.
While varying regionally, both scenarios also suggested either a slight cumulative decline or negligible change in catch potential for clams, rockfish, lingcod, and sculpins across the North and Central Coast.
One potential problem the study suggests is that fishers in southern British Columbia may, in the future, try to move north to follow the harvest, leading to potential conflicts. The cost of travel, may, however, discourage that.
One of the recommendations from the study is that First Nations revive the traditional clam gardens.
Traditional clam beds serve as an ideal example of a method that could be applied to offset climatic impacts through internalized mechanisms, using local cultivation to generate increased productivity by enhancing native habitat rather than redirecting extraction efforts towards other regions or species. Clam gardens constructed in a manner akin to those situated near ancient settlements of the Northern Coast Salish and Laich-kwil-tach First Nations have been found to generate higher clam densities, biomass, and growth rates than non-walled beaches . These benefits were observed for Pacific littleneck clams and butter clams , two clams that are of cultural, economic, and ecological importance to the region Reinstating clam beds in First Nations’ territorial lands has been suggested as a means of simultaneously achieving local conservation and cultural objectives and may thereby provide a politically and ecologically viable option for mitigating climate-related impacts.
The most important recommendation is that the First Nations and other stakeholders start cooperating immediately to offset how the changing climate with affect the fishery:
Management of salmon and herring stocks has been highly contentious due to the myriad of stakeholders who depend upon them, which include First Nations, recreational fisheries, and commercial fisheries….
Aside from fulfilling societal needs, salmon serve as key ecological components of the Pacific Northwest Coast, functioning as the mechanisms by which nutrients are transferred from the ocean to freshwater and terrestrial ecosystems
It says the projections show that a “redistribution of fishing effort” will not “fully offset declines in salmon and herring”
attaining a state of collaboration between First Nations, DFO, and other sectors has the potential to yield beneficial ecological and political results, if implemented correctly. Parallels exist between First Nations’ traditional fisheries management approaches and “modern” approaches (e.g., spatial management, mariculture, selective fishing, fishing closures), with differences arising primarily due to diverging worldviews.
It recommends local application of First Nations’ traditional management strategies to “provide opportunities to collaboratively engage in adaptive ecosystem-based management and to coordinate efforts to attain conservation objectives.”
They give an example of how the Nisga’a Nation have ensured their equal partnership in management by employing traditional fish wheel technology to monitor and assess stocks and by leveraging traditional ecosystem-based management practices that could be applied to plan long-term objectives and management approaches.
It concludes by saying that joint-management will not only work to reduce the impact of climate change but also head off potential conflict.
Through such joint-management regimes, traditional fisheries management strategies could be applied to advance localized research directives and to reduce impacts on stocks under unprecedented environmental change. Moreover, the risk of conflict over declining resources underlines the need to establish common and equitable ground to ensure successful joint management of fisheries, and to leverage collective expertise.
Climate change, which will raise ocean temperatures and more carbon dioxide in the atmosphere which will increase the acidification of the oceans will have the greatest affect on the intertidal zones—and a key indicator species, crabs and similar creatures.
A study by San Fransisco State University published today in the Journal of Experimental Biology used the small (usually 15 millimetre) porcelain crab to simulate the conditions that will come to the intertidal zone and affect other species including the larger dungeness crab. ( According to Wikipedia, porcelain crabs are an example of carcinisation, whereby a non-crab-like animal,in this case a relative of a squat lobster evolves into an animal that resembles a true crab.)
Studies have shown that as climate changes, coastal ecosystems will be see “have increased extremes of low tide-associated thermal stress and ocean acidification-associated low pH.”
The study by co-author Jonathan Stillman and his colleagues, is the first to explore intertidal zone organisms’ response to combined variation in temperature and pH, which is expected to intensify in the future due to climate change and ocean acidification.
The current and previous studies have shown that during low tide, air temperatures in the intertidal zone can fluctuate dramatically as much as 20 degrees celcius over short periods of time up to six hours. Temperatures can reach extremes when low tides coincide with hot days. Marine intertidal organisms tolerate these natural temperature fluctuations, yet it is known that they are limited in their scope to tolerate future warming.
In the simulation porcelain crabs were placed in a specially built aquarium designed to simulate the natural environment, including tidal changes. At low tide, with the crabs exposed to the air, the researchers varied the temperature to mirror day-to-day changes the crabs currently experience — such as cooler air on a cloudy day and warmer air on a sunny day — as well as conditions expected in the future. At high tide, with the crabs submerged, they adjusted pH levels in the same fashion.
As the temperature rose and pH levels dropped — conditions expected in the future due to climate change — the crabs’ ability to withstand heat increased. But at the same time, researchers found, the crabs’ metabolism decreased. In addition, the combined effect of higher temperatures and lower pH levels was greater than the effect of either of those two factors alone.
“When you combine these things together, they slow down metabolism, which means crabs become sluggish and have less overall energy to do things like growth or reproduction,” Stillman said. “If their whole energy budget is a pie, then in the future the size of the pie is going to be smaller, and a larger percentage of it is going to be taken up by survival and maintenance.”
The study says that although porcelain crabs are not particularly important to humans — they are not fishery crabs such as Dungeness — they are an important food source for coastal fish, birds and other crabs.
The results suggest “there is a potential for adverse long-term ecological consequences for intertidal ectotherms”– that is creatures that depend on the external temperatures to regulate body heat– “exposed to increased extremes in pH and temperature due to reduced energy for behavior and reproduction.”
The porcelain crabs can also be seen as a model for scientists to understand the impacts of climate change and ocean acidification on crustaceans in general, Stillman said. Future studies will look at the impact of varying temperature and pH changes on different species of porcelain crabs, juvenile crabs and crab embryos.
The United States says acidification of the oceans means there is an already growing risk to the northwest coast fishery, including crab and salmon, according to studies released by the National Oceanic and Atmospheric Administration.
As more carbon dioxide is released into the atmosphere and absorbed by the oceans, the water is becoming more acidic and that affects many species, especially shellfish, dissolving the shells.
A NOAA study released today of environmental and economic risks to the Alaska fishery says:
Many of Alaska’s nutritionally and economically valuable marine fisheries are located in waters that are already experiencing ocean acidification, and will see more in the near future…. Communities in southeast and southwest Alaska face the highest risk from ocean acidification because they rely heavily on fisheries that are expected to be most affected by ocean acidification…
An earlier NOAA study, released in April, identified a long term threat to the salmon fishery as small ocean snails called pteropods which are a prime food source for pink salmon are already being affected by the acidification of the ocean.
NOAA says:
The term “ocean acidification” describes the process of ocean water becoming more acidic as a result of absorbing nearly a third of the carbon dioxide released into the atmosphere from human sources. This change in ocean chemistry is affecting marine life, particularly the ability of shellfish, corals and small creatures in the early stages of the food chain to build skeletons or shells.
Today’s NOAA study is the first published research by the Synthesis of Arctic Research (SOAR) program, which is supported by an US inter-agency agreement between NOAA’s Office of Oceanic and Atmospheric Research and the Bureau of Ocean Energy Management (BOEM) Alaska Region.
Des Nobles, President of Local #37 Fish [UFAWU-UNIFOR] told Northwest Coast Energy News that the fisheries union and other fisheries groups in Prince Rupert have asked both the Canadian federal and the BC provincial governments for action on ocean acidification. Nobles says so far those requests have been ignored,
Threat to crabs
The studies show that red king crab and tanner crab grow more slowly and don’t survive as well in more acidic waters. Alaska’s coastal waters are particularly vulnerable to ocean acidification because of cold water that can absorb more carbon dioxide and unique ocean circulation patterns which bring naturally acidic deep ocean waters to the surface.
“We went beyond the traditional approach of looking at dollars lost or species impacted; we know these fisheries are lifelines for native communities and what we’ve learned will help them adapt to a changing ocean environment,” said Jeremy Mathis, Ph.D., co-lead author of the study, an oceanographer at NOAA’s Pacific Marine Environmental Laboratory in Seattle, and the director of the University of Alaska Fairbanks School of Fisheries and Ocean Sciences Ocean Acidification Research Center.
As for Dungeness crab, Sarah Cooley, a co-author of the Alaska study, who was with the Woods Hole Oceanographic Institution at the time, told Northwest Coast Energy News, “The studies have not been done for Dungeness crab that have been done for king and tanner crab, that’s something we’re keenly aware of. There’s a big knowledge gap at this point.” She says NOAA may soon be looking at pilot study on Dungeness crab.
Risk to Salmon, Mackerel and Herring
In a 2011-2013 survey, a NOAA-led research team found the first evidence: “that acidity of continental shelf waters off the West Coast is dissolving the shells of tiny free-swimming marine snails, called pteropods, which provide food for pink salmon, mackerel and herring.”
The survey estimated that the percentage of pteropods along the west coast with dissolving shells due to ocean acidification had “doubled in the near shore habitat since the pre-industrial era and is on track to triple by 2050 when coastal waters become 70 percent more corrosive than in the pre-industrial era due to human-caused ocean acidification.”
That study documented the movement of corrosive waters onto the continental shelf from April to September during the upwelling season, when winds bring water rich in carbon dioxide up from depths of about 120 to 180 metres to the surface and onto the continental shelf.
“We haven’t done the extensive amount of studies yet on the young salmon fry,” Cooley said. “I would love to see those studies done. I think there is a real need for that information. Salmon are just so so important for the entire Pacific Northwest and up to Alaska.”
In Prince Rupert, Barb Faggetter, an independent oceanographer whose company Ocean Ecology has consulted for the fisherman’s union and NGOs, who was not part of the study, spoke generally about the threat of acidification to the region.
She is currently studying the impact of the proposed Liquified Natural Gas terminals that could be built at Prince Rupert near the Skeena River estuary. Faggetter said that acidification could affect the species eaten by juvenile salmon. “As young juveniles they eat a lot of zooplankton including crustaceans and shell fish larvae.”
She added, “Any of the shell fish in the fishery, including probably things like sea urchins are all organisms that are susceptible to ocean acidification because of the loss of their capacity to actually incorporate calcium carbonate into their shells.”
Faggetter said her studies have concentrated on potential habitat loss near Prince Rupert as a result of dredging and other activities for liquified natural gas development, She adds that ocean acidification “has been a consideration that climate change will further worsen any potential damage that we’re currently looking at.”
Her studies of the Skeena estuary are concentrating on “rating” areas based on the food supply available to juvenile salmon, as well as predation and what habitat is available and the quality of that habitat to identify areas that “are most important for the juvenile salmon coming out of the Skeena River estuary and which are less important.”
She said that climate change and ocean acidification could impact the Skeena estuary and “probably reduce some of the environments that are currently good because they have a good food supply. If ocean acidification reduces that food supply that will no longer be good habitat for them” [juvenile salmon].
The August 2011 NOAA survey of the pteropods was done at sea using “bongo nets” to retrieve the small snails at depths up to 200 metres. The research drew upon a West Coast survey by the NOAA Ocean Acidification Program in that was conducted on board the R/V Wecoma, owned by the National Science Foundation and operated by Oregon State University.
Nina Bednarsek, Ph.D., of NOAA’s Pacific Marine Environmental Laboratory in Seattle, the lead author of the April pteropod paper said, “Our findings are the first evidence that a large fraction of the West Coast pteropod population is being affected by ocean acidification.
“Dissolving coastal pteropod shells point to the need to study how acidification may be affecting the larger marine ecosystem. These near shore waters provide essential habitat to a great diversity of marine species, including many economically important fish that support coastal economies and provide us with food.”
Ecology and economy
Today’s study on the effects of acidification on the Alaska fishery study examined the potential effects on a state where the fishing industry supports over 100,000 jobs and generates more than $5 billion in annual revenue. Fishery-related tourism also brings in $300 million annually to the state.
The study also shows that approximately 120,000 people or roughly 17 percent of Alaskans rely on subsistence fisheries for most, if not all of their dietary protein. The Alaska subsistence fishery is open to all residents of the state who need it, although a majority of those who participate in the subsistence fishery are Alaska’s First Nations. In that way it is somewhat parallel to Canada’s Food, Ceremonial and Social program for First Nations.
“Ocean acidification is not just an ecological problem—it’s an economic problem,” said Steve Colt, Ph.D., co-author of the study and an economist at the University of Alaska Anchorage. “The people of coastal Alaska, who have always looked to the sea for sustenance and prosperity, will be most affected. But all Alaskans need to understand how and where ocean acidification threatens our marine resources so that we can work together to address the challenges and maintain healthy and productive coastal communities.”
The Alaska study recommends that residents and stakeholders in vulnerable regions prepare for environmental challenge and develop response strategies that incorporate community values and needs.
“This research allows planners to think creatively about ways to help coastal communities withstand environmental change,” said Cooley, who is now science outreach manager at Ocean Conservancy, in Washington, D.C. “Adaptations can be tailored to address specific social and environmental weak points that exist in a community.
“This is really the first time that we’ve been able to go under the hood and really look at the factors that make a particular community in a borough or census are less or more vulnerable from changing conditions resulting from acidification. It gives us a lot of power so that we don’t just look at environmental issues but also look at the social story behind that risk.”
As for the southern part of the Alaska panhandle nearest British Columbia, Cooley said, “What we found is that there is a high relative risk compared to some of the other areas of Alaska and that is because the communities there undertake a lot of subsistence fishing, There tend not be a whole lot of commercial harvests in the fisheries there but they are very very important from a subsistence stand point… And they’re tied to species that we expect to be on the front line of acidification, many of the clam species that are harvested in that area and some of the crab species.”
Long term effects
Libby Jewett, Director of the NOAA Ocean Acidification Program and author of the pteropod study said, “Acidification of our oceans may impact marine ecosystems in a way that threatens the sustainability of the marine resources we depend on.
“Research on the progression and impacts of ocean acidification is vital to understanding the consequences of our burning of fossil fuels.”
“Acidification is happening now,” Cooley said. “We have not yet observed major declines in Alaskan harvested species. In Washington and Oregon they have seen widespread oyster mortality from acidification.
“We don’t have the documentation for what’s happening in Alaska right now but there are a lot of studies staring up right now that will just keep an eye out for that sort of thing, Acidification is going to be continuing progressively over the next decades into the future indefinitely until we really curb carbon dioxide emissions. There’s enough momentum in the system that is going to keep acidification advancing for quite some time.
“What we need to be doing as we cut the carbon dioxide, we need to find ways to strength communities that depend on resources and this study allows us to think differently about that and too really look at how we can strengthen those communities.
Faggetter said. “It’s one more blow to an already complex situation here, My study has been working particularly on eel grass on Flora Bank (pdf) which is a very critical habitat, which is going to be impacted by these potential industrial developments and that impact will affect our juvenile salmon and our salmon fishery very dramatically, that could be further worsened by ocean acidification.”
She said that acidification could also be a long term threat to plans in Prince Rupert to establish a geoduck fishery (pronounced gooey-duck).
The popular large 15 to 20 centimetre clam is harvested in Washington State and southern BC, but so far hasn’t been subject to commercial fishing in the north.
NOAA said today’s study shows that by examining all the factors that contribute to risk, more opportunities can be found to prevent harm to human communities at a local level. Decision-makers can address socioeconomic factors that lower the ability of people and communities to adapt to environmental change, such as low incomes, poor nutrition, lack of educational attainment and lack of diverse employment opportunities.
NOAA’s Ocean Acidification Program and the state of Alaska are also developing tools to help industry adapt to increasing acidity.
The new NOAA study is the first published research by the Synthesis of Arctic Research (SOAR) program. which is supported by an inter-agency agreement between NOAA’s Office of Oceanic and Atmospheric Research and the Bureau of Ocean Energy Management (BOEM) Alaska Region.
1. Why was the study suddenly released after the province said it was “privileged?”
2. Did the apparently rushed release mean that the study, as far as the public is concerned, is incomplete?
3. While most people in Kitimat believed that the study would be a wide ranging look at all parameters of industrial development in the valley, it was limited to just two factors, sulphur dioxide and nitrogen dioxide.
4. It appears that everyone involved were consulted prior to the release with one key execption, the District of Kitimat. Why?
5. The study appears to have changed in its criterion from the time of the request for proposal and the final release one issue—an oil export terminal, which went from “crude” in the request for proposal to refined in the final report.
While the study is spun has a showing that industrial development in the Kitimat Valley can proceed as long as the environment is properly managed, the gaps and the spin will likely bring doubt to the results. That means that a wider ranging and truly independent study of the air shed is needed so that both residents and industry can then make the proper decisions.
In October 2013, the Ministry of the Environment issues a “request for proposal” to “study potential cumulative effects to environment and human health from existing and proposed industrial facilities in the Kitimat airshed.” to be filed by March 31, 2014.
The Province will fund a $650,000 scientific study to help inform regulatory and policy development for future industrial activity in the Kitimat area. The goal is to ensure the potential impacts from industrial air emissions are clearly understood prior to new projects being approved and in operation.
The Kitimat Airshed Impact Assessment Project will look at the cumulative effects of existing and proposed industrial air emissions in the airshed. These include emissions from: an existing aluminium smelter, three proposed LNG terminals, a proposed oil refinery, a crude-oil export facility, and gas-turbine-powered electrical generation facilities. The study will focus on sulphur dioxide and nitrogen dioxide emissions from these facilities.
The study will assess the impact of emissions through a number of scenarios, including their potential effects on water and soil, as well as on vegetation and human health from direct exposure.
With that news release, it appears that many people assumed that “cumulative effects of existing and proposed industrial air emissions in the air shed,” would include all possible scenarios and contaminants.
The report, when it was released on Friday, covered just the “focus” sulphur dioxide and nitrogen dioxide and no other factors in air quality.
Crude or refined oil export?
As Northwest Coast Energy News noted that the report, as released, doesn’t include any references to the Enbridge Northern Gateway project, even though Northern Gateway is a source of “proposed industrial air emissions in the air shed.” The request for proposal also mentions “a crude-oil export facility” but the report as issued concerns a marine terminal for Black’s refinery
The products will be exported via a marine terminal on the Douglas Channel. Projected volumes include 320,000 barrels per day of diesel fuel, 110,000 barrels per day of gasoline and 60,000 barrels per day of jet fuel.
The map in the main report clearly shows that the study concerned the “Kitimat Clean Refinery Port” not a crude oil export facility—in other words likely Enbridge Northern Gateway.
Kitimat excluded
On October 21, 2013, District of Kitimat Council endorsed a motion by former Councillor Corinne Scott:
“The BC Government has recently announced a budget of $650,000 to study the cumulative effects on the air quality due to the proposed industrial development in the District of Kitimat. It would be beneficial to have a representative from the District of Kitimat as an active participant on the committee to provide input and feedback as the study progresses.”
At the time Chief Adminstrative Officer Ron Poole told council that the minister’s office had called and promised to “involve the District.”
At that meeting, Councillor Mary Murphy reported that member were “vocal” at the Union of BC Municpalities that it was essential that Kitimat be involved. Councillors suggested that the study be wide ranging and include emissions already in the area and residual emissions left over from the closed Eurocan and Methaex operations.
The provincial final air shed report makes no mention at all of the District of Kitimat, Eurocan or Methanex.
In April, 2014, after the March 31, reporting deadine, the District and Council had heard nothing from the province. So in April, District Council passed a motion asking for a report on the status of the study.
Crown Privilege
In June, the province refused to release the report to lawyers involved in a suit against the Environmental Assessment Board which is challenging Rio Tinto Alcans’ permit to increase sulphur dixoide emission in the valley. According to the Globe and Mail, Dennis Doyle, a lawyer with the Ministry of the Attorney General, in the RTA suit, wrote to the Environmental Law Centre in Victoria
In a follow-up letter dated June 12, Mr. Doyle said, “On the matter of the Kitimat Airshed Study I am instructed that this report was prepared to guide development of government policy on industrial development in the Kitimat area and to assist the executive council in its ongoing deliberations. It is not a report that was prepared for the Respondent and played no part of the decision-making process for the permit amendment which is now under appeal.”
The EAB told the province to respond to that question by July 18. Instead there was a hastily called news conference and the report was released. However, a close look at the report shows that it was likely rushed to meet the EAB deadine and was incomplete—rather surprising for a report that was supposed to be complete by March 31.
Rushed report
What evidence is there that the report was rushed out by the Ministry of the Environment? The most compelling indication is that instead of a public-friendly Summary Report with an executive summary and clear conclusions, there was nothing more than a short Power Point presentation.
Most people in Kitimat who follow the energy debate are familiar with the approach of combining a readable summary with technical data. It is most evident in the report of the Enbridge Northern Gateway Joint Review, which issued a relative short summary, Connections along with the long technical report, Considerations.
Let’s take as a prime example, the original report on the Kitimat airshed commissioned by Rio Tinto Alcan. In that case, ESSA Technologies Ltd of Vancouver, the company hired by the RTA Kitimat Modernization Project to study the effects of increased sulphur dioxide emissions in the Kitimat Valley, issued three documents, an easy to understand 37-page summary report, a much longer 456 page Technical Assessment Report and a third 332 page volume of appendices, technical data and tables.
It was the same company, ESSA Technologies, that was retained by the province to do the much larger study of the airshed. However, the only public-friendly information was the 16 page highly simplified Power Point presentation.
The ESSA summary report for RTA shows in plain language, the reasons for its conclusions that the increased sulphur dioxide from KMP on human health “is characterized as moderate, an acceptable impact, but in need of closer scrutiny with moderate monitoring.” That report also outlines the limitations and uncertainties of the study.
There was no similar plain language summary released for the overall provincial air shed study, even though it was produced by the same company and came to similar conclusions. To find any limitations or uncertainties in the provincial air shed study you have to do a computer search for those key words.
So it is apparent that intended audience for the report is not really those who live in Kitimat, where over the past five years there is wide knowledge that a summary release along with a technical report is considered a standard procedure.
Kitimat not consulted
At the Friday news conference, reporters asked Environment Minister Mary Polak several times about the delay in releasing the report, and then why it was suddenly released.
In answer to the initial question, Polak said, “We had always intended to release it.” She refused to comment on the claim of cabinet privilege, saying that was the responsibility of government lawyers at the Ministry of the Attorney General. She said that the government had received the March 31 report “by the end of April and “it went through quite a rigorous and thorough review by different agencies… we are satisfied now that the findings have been given the kind of rigorous overview and we’re pleased with what has resulted from that.”
Polak said the Haisla Nation were consulted before the commissioning of the report.
Asked again about who the BC government consulted during the review period, she replied, “There were a number of other groups involved in technical review, so not just Ministry of Environment, you’ll be aware of Northern Health authority, but Ministry of Natural Gas Development, Health Canada, Environment Canada and also specialist reviewers from the Province of Quebec, the University of Helsinki, UBC, also private consultants. Then we spent some time going over and having a technical review with Gitga’at and Coastal Coastal First Nations. So it was a matter of ensuring that we had done the very best review of the work before the occasion on which we released it.”
Which leaves one big question, why was the Province of Quebec and the University of Helsinki consulted and Kitimat, despite requests, was not?
Not in the report, not my department
The provincial government called for a report on the “cumulative effects of existing and proposed industrial air emissions” and noted it would focus “ focus on sulphur dioxide and nitrogen dioxide emissions from these facilities.” It is clear that the report did not go beyond the narrow focus on those two substances.
At the Vancouver news conference, a reporter asked Polak why green house gases were not included.
She replied, “That’s not what this study was intended to look at. This department deals with pollutants and pollution and protecting our environment from it, whereas GHG [green house gas] emissions are dealt with in our department around climate change and climate action. These particular substances have an immediate impact on human health and vegetative health and the receiving environment generally unlike GHGs which are a more global impacted and of course have an impact on climate change. This study only looked at those pollutants sulphur doixide and nitrogen dioxide
Then a second reporter asked here about particulate matter, to which Polak replied, “Coming from the Fraser Valley I am very aware of the impact of particulate matter. Any industrial development that we permit in British Columbia or receives an environmental assessment certificate, particulate matter and the release of particulate matter is one of the things that gets evaluated as we determine whether or not to grant those permits. Or to put stipulations on those permits in order to ensure a reduction or management of particulate matter. That’s where that’s dealt with and we have some pretty good understanding of how that operates. We also have some modelling from this study.
“The reason this study didn’t report on that because we hadn’t asked them to. We specifically wanted to get at the issue of sulphur disoxide and nitrogen dioxide but please do not take frm that because it’s not in the study, it doesn’t get looked at. It simply gets looked at in a different process. In this case it was the understanding of the Kitimat air shed with respect to sulphur dixoide and nitrogen dioxide that we needed to have a better answers and better information.”
In other words, despite what the original proposal said: “The goal is to ensure the potential impacts from industrial air emissions are clearly understood prior to new projects being approved and in operation,” the provincial government is content to wait until the permit phase to consider particulate matter, rather than include particulate matter in the long term planning for the air shed.
And for green house gases, the same attitude seems to apply, either it’s not her department or it will be dealt with sometime in the future.
What’s going on in the air shed?
Although the provincial government has been able to spin that the air shed report clears the way for more industrial development in the region, the report isn’t much help for long term planning for those both for and against industrial development in the valley.
First one has to wonder just how comprehensive was the study, even when it comes to sulphur dioxide and nitrogen dioxide?
The report for Rio Tinto Alcan for just one substance—sulphur dixoide—from one industry—aluminum smelting–led to a 456 page technical report with 332 pages of appendices.
The provincial technical report adds one more substance, nitrogen dioxide, and adds four LNG facilities, an oil refinery, different export terminals for those industries, and two hydro generating stations plus related shipping, including a passing mention of vehicular and train traffic. The new report is 363 pages, including the appendices. (It should be noted that the air shed report does reference some of the information in the RTA report)
The various studies for the Enbridge Northern Gateway, which often contained material on air emissions, included a much longer list of what in industry jargon are called CPOC “chemicals of potential concern,” including chemicals that might be released in trace amounts from the Northern Gateway terminal, but may be of more concern from LNG projects. Who knows unless those substances are studied?
As was required by the Joint Review Panel, Enbridge also studied potential problems from accidental release of air-borne contaminants from the Northern Gateway project. There is no mention of accidental release in the current air shed study.
Although the increase in truck traffic in Kitimat is clearly visible to people who live in the town, the air shed report also speculates that with LNG and a possible refinery, there will also be a significant increase in rail traffic coming into Kitimat, hauled, of course, by diesel locomotives, which the report says is “expected to be conservatively captured within the background concentration adjustment.”
Can the Valley “handle industrial expansion”
Stakeholders in the region from the District of Kitimat to the Gitga’at First Nation to various environmental groups asked for a comprehensive review of what is going to happen in the Kitimat air shed with industrial expansion.
So the answer to the question can the valley “handle industrial expansion” after the flawed and limited report from the provincial government is not “yes,” but “we don’t know yet.”
It appears that the report is part of Christy Clark’s ongoing campaign that LNG will save the provincial economy.
There are two factors the report ignores.
First the energy companies are going to make their final investment decision on cold hard facts, including their own assessment of the potential problems from the air shed, not spin from the provincial government.
Second, until there is a proper air shed study, the First Nations, including the Haisla in Kitimat, the Gitga’at at Hartley Bay, the Kitselas in Terrace will not have solid evidence to make a decision on the details of the LNG or refinery development on their traditional territory and increased ship traffic along the coast and that will come into immediate conflict with the Supreme Court ruling on the Tsilhqot’in decision and the finding that “Whether a particular use is irreconcilable with the ability of succeeding generations to benefit from the land will be a matter to be determined when the issue arises.”
There is a new Orwellian phrase used by both the federal and provincial government. Every report is “independent” and “science-based,” although all they all tend to support the policy of the commissioning agency.
What the Kitimat Valley, Douglas Channel and the Terrace region need is a truly independent and truly science based and truly comprehensive evaluation of the air shed. At the moment, that doesn’t exist. It should whether it comes from industry or if the local governments can find the budget to fund a proper study or some combination of the two.
Tropical fish are migrating into what were once temperate water as a result of ocean warming and that poses a serious threat to the areas they invade, because they overgraze on kelp forests and seagrass meadows, according to a new study from the University of New South Wales in Australia
The study says the harmful impact of tropical fish is most evident in southern Japanese waters and the eastern Mediterranean, where there have been dramatic declines in kelps.
There is also emerging evidence in Australia and the US that the spread of tropical fish towards the poles is causing damage in the areas they enter.
“The tropicalisation of temperate marine areas is a new phenomenon of global significance that has arisen because of climate change,” according to the study lead author, Dr. Adriana Verges, of the University of New South Wales.
“Increases in the number of plant-eating tropical fish can profoundly alter ecosystems and lead to barren reefs, affecting the biodiversity of these regions, with significant economic and management impacts.”
The study is published in the journal Proceedings of the Royal Society B.
As the oceans have warmed and the climate has changed, hotspots are developing in regions where the currents that transport warm tropical waters towards the poles are strengthening.
Increased flow of the East Australian Current, for example, has meant waters south-east of the continent are warming at two to three times the global average.
Tropical fish are now common in Sydney Harbour during the summer months.
Japan, the east coast of the US, northern Brazil and south eastern Africa are also strongly influenced by coastal currents that transport warm tropical waters.
“In tropical regions, a wide diversity of plant-eating fish perform the vital role of keeping reefs free of large seaweeds, allowing corals to flourish. But when they intrude into temperate waters they pose a significant threat to these habitats. They can directly overgraze algal forests as well as prevent the recovery of algae that have been damaged for other reasons,” Dr Verges said.
Tropical fish expanding their ranges into temperate areas include unicornfish, parrotfish, and rabbitfish.
The study authors include researchers from Australia, the US, Spain, Singapore, the UK and Japan.
Kelp disappears in southern Japan
The study reports that more than 40 per cent of the kelp and algal beds have disappeared since the 1990s, a phenomenon known in Japan as isoyake.
Tropical species including rabbitfish and parrotfish appear to be mainly responsible.
Although these fish have been present for a long time, their annual grazing rates have increased dramatically as ocean temperatures in winter have risen. Corals now dominate the ecosystem in many locations. The changes have led to the collapse of the abalone fishery.
Rabbit fish expand in eastern Mediterranean
Tropical fish moved into the eastern Mediterranean from the Red Sea after the opening of the Suez Canal. In recent decades, rabbitfish numbers have increased, resulting in hundreds of kilometres of deforested areas and a 40 per cent decrease in the variety of marine species.
As the Mediterranean warms the rabbitfish are expanding their range westward, putting other shallow ecosystems at risk.
Gulf of Mexico
There has been a more than 20-fold increase in the number of parrotfish in the Gulf of Mexico – a species which consumes seagrass at five times the rate of native grazers. The number of plant-eating green turtles and manatees has also increased.
Australia
In Western Australia, emerging evidence suggests that increases in the number of tropical fish are preventing the recovery of kelp forest damaged by a heat wave in 2011.
In eastern Australia, kelp has disappeared from numerous reefs in the past five years and Dr Verges’ research suggests intense grazing by tropical fish on the kelp preceded this.
Using more wood for construction of both buildings and bridges thus reducing the amount of steel and concrete would substantially reduce global carbon dioxide emissions and fossil fuel consumption, according to a Yale University study.
The idea is that using wood would reduces the amount of energy required for steel and concrete and therefore greenhouse gases.
The study says that sustainable management of wood resources would both allow proper management of forsests while also reducing fossil fuel burning.
The results were published in the Journal of Sustainable Forestry.
Scientists from the Yale School of Forestry & Environmental Studies (F&ES) and the University of Washington’s College of the Environment evaluated a range of scenarios, including leaving forests untouched, burning wood for energy, and using various solid wood products for construction.
The researchers calculated that the amount of wood harvested globally each year (3.4 billion cubic meters) is equivalent to only about 20 percent of annual wood growth (17 billion cubic meters), and much of that harvest is burned inefficiently for cooking.
They found that increasing the wood harvest to the equivalent of 34 percent or more of annual wood growth would have profound and positive effects:
Between 14 and 31 percent of global CO2 emissions could be avoided by preventing emissions related to steel and concrete; by storing CO2 in the cellulose and lignin of wood products; and other factors.
About 12 to 19 percent of annual global fossil fuel consumption would be saved including savings achieved because scrap wood and unsellable materials could be burned for energy, replacing fossil fuel consumption.
Wood-based construction consumes much less energy than concrete or steel construction. For example, manufacturing a wood floor beam requires 80 megajoules (mj) of energy per square meter of floor space and emits 4 kilograms (kg) of CO2. By comparison, for the same square meter, a steel beam requires 516 mj and emits 40 kg of CO2, and a concrete slab floor requires 290 mj and emits 27 kg of CO2. Through efficient harvesting and product use, more CO2 is saved through the avoided emissions, materials, and wood energy than is lost from the harvested forest.
“This study shows still another reason to appreciate forests — and another reason to not let them be permanently cleared for agriculture,” said Chadwick Oliver, Pinchot Professor of Forestry and Environmental Studies, Director of the Global Institute of Sustainable Forestry at F&ES and lead author of the new study. “Forest harvest creates a temporary opening that is needed by forest species such as butterflies and some birds and deer before it regrows to large trees. But conversion to agriculture is a permanent loss of all forest biodiversity.”
The manufacture of steel, concrete, and brick accounts for about 16 percent of global fossil fuel consumption. When the transport and assembly of steel, concrete, and brick products is considered, its share of fossil fuel burning is closer to 20 to 30 percent, Oliver said.
Reductions in fossil fuel consumption and carbon emissions from construction will become increasingly critical as demand for new buildings, bridges and other infrastructure is expected to surge worldwide in the coming decades with economic development in Asia, Africa, and South America, according to a previous F&ES study. And innovative construction techniques are now making wood even more effective in bridges and mid-rise apartment buildings.
According to Oliver, carefully managed harvesting also reduces the likelihood of catastrophic wildfires.
And maintaining a mix of forest habitats and densities in non-reserved forests — in addition to keeping some global forests in reserves — would help preserve biodiversity in ecosystems worldwide, Oliver said. About 12.5 percent of the world’s forests are currently located in reserves.
“Forests historically have had a diversity of habitats that different species need,” Oliver said. “This diversity can be maintained by harvesting some of the forest growth. And the harvested wood will save fossil fuel and CO2 and provide jobs — giving local people more reason to keep the forests.”
The article, “Carbon, Fossil Fuel, and Biodiversity Mitigation with Woods and Forests,” was co-authored by Nedal T. Nassar of the Yale School of Forestry & Environmental Studies and Bruce R. Lippke and James B. McCarter of the University of Washington.
A new study indicates that atmospheric emissions of methane, a critical greenhouse gas, mostly leaking from the natural gas industry are likely 50 per cent higher than previously estimated by the US Environmental Protection Agency.
A study, “Methane Leakage from North American Natural Gas Systems,” published in the Feb. 14 issue of the international journal Science, synthesizes diverse findings from more than 200 studies ranging in scope from local gas processing plants to total emissions from the United States and Canada.
The scientists say this first thorough comparison of evidence for natural gas system leaks confirms that organizations including the EPA have underestimated U.S. methane emissions generally, as well as those from the natural gas industry specifically.
Natural gas consists predominantly of methane. Even small leaks from the natural gas system are important because methane is a potent greenhouse gas – about 30 times more potent than carbon dioxide.
“People who go out and actually measure methane pretty consistently find more emissions than we expect,” said the lead author of the new analysis, Adam Brandt, an assistant professor of energy resources engineering at Stanford University. “Atmospheric tests covering the entire country indicate emissions around 50 per cent more than EPA estimates,” said Brandt. “And that’s a moderate estimate.”
The standard approach to estimating total methane emissions is to multiply the amount of methane thought to be emitted by a particular kind of source, such as leaks at natural gas processing plants or belching cattle, by the number of that source type in a region or country. The products are then totalled to estimate all emissions. The EPA does not include natural methane sources, like wetlands and geologic seeps.
The national natural gas infrastructure has a combination of intentional leaks, often for safety purposes, and unintentional emissions, like faulty valves and cracks in pipelines. In the United States, the emission rates of particular gas industry components – from wells to burner tips – were established by the EPA in the 1990s.
Since then, many studies have tested gas industry components to determine whether the EPA’s emission rates are accurate, and a majority of these have found the EPA’s rates too low. The new analysis does not try to attribute percentages of the excess emissions to natural gas, oil, coal, agriculture, landfills, etc., because emission rates for most sources are so uncertain.
Several other studies have used airplanes and towers to measure actual methane in the air, to test total estimated emissions. The new analysis, which is authored by researchers from seven universities, several national laboratories and US federal government bodies, and other organizations, found these atmospheric studies covering very large areas consistently indicate total U.S. methane emissions of about 25 to 75 per cent higher than the EPA estimate.
Some of the difference is accounted for by the EPA’s focus on emissions caused by human activity. The EPA excludes natural methane sources like geologic seeps and wetlands, which atmospheric samples unavoidably include. The EPA likewise does not include some emissions caused by human activity, such as abandoned oil and gas wells, because the amounts of associated methane are unknown.
The new analysis finds that some recent studies showing very high methane emissions in regions with considerable natural gas infrastructure are not representative of the entire gas system. “If these studies were representative of even 25 percent of the natural gas industry, then that would account for almost all the excess methane noted in continental-scale studies,” said a co-author of the study, Eric Kort, an atmospheric science professor at the University of Michigan. “Observations have shown this to be unlikely.”
Natural gas as a replacement fuel
The scientists say that even though the gas system is almost certainly leakier than previously thought, generating electricity by burning gas rather than coal still reduces the total greenhouse effect over 100 years. Not only does burning coal release an enormous amount of carbon dioxide, mining it releases methane.
Perhaps surprisingly though, the analysis finds that powering trucks and buses with natural gas instead of diesel fuel probably makes the globe warmer, because diesel engines are relatively clean. For natural gas to beat diesel, the gas industry would have to be less leaky than the EPA’s current estimate, which the new analysis also finds quite improbable.
“Fueling trucks and buses with natural gas may help local air quality and reduce oil imports, but it is not likely to reduce greenhouse gas emissions. Even running passenger cars on natural gas instead of gasoline is probably on the borderline in terms of climate,” Brandt said.
The natural gas industry, the analysis finds, must clean up its leaks to really deliver on its promise of less harm. Fortunately for gas companies, a few leaks in the gas system probably account for much of the problem and could be repaired. One earlier study examined about 75,000 components at processing plants. It found some 1,600 unintentional leaks, but just 50 faulty components were behind 60 percent of the leaked gas.
“Reducing easily avoidable methane leaks from the natural gas system is important for domestic energy security,” said Robert Harriss, a methane researcher at the Environmental Defense Fund and a co-author of the analysis. “As Americans, none of us should be content to stand idly by and let this important resource be wasted through fugitive emissions and unnecessary venting.”
Gas companies not cooperating
One possible reason leaks in the gas industry have been underestimated is that emission rates for wells and processing plants were based on operators participating voluntarily. One EPA study asked 30 gas companies to cooperate, but only six allowed the EPA on site.
“It’s impossible to take direct measurements of emissions from sources without site access,” said Garvin Heath, a senior scientist with the National Renewable Energy Laboratory and a co-author of the new analysis. “But self-selection bias may be contributing to why inventories suggest emission levels that are systematically lower than what we sense in the atmosphere.”
The research was funded by the nonprofit organization Novim through a grant from the Cynthia and George Mitchell Foundation. “We asked Novim to examine 20 years of methane studies to explain the wide variation in existing estimates,” said Marilu Hastings, sustainability program director at the Cynthia and George Mitchell Foundation. “Hopefully this will help resolve the ongoing methane debate.”
###
Other co-authors of the Science study are Francis O’Sullivan of the MIT Energy Initiative; Gabrielle Pétron of the National Oceanic and Atmospheric Administration (NOAA) and the University of Colorado; Sarah M. Jordaan of the University of Calgary; Pieter Tans, NOAA; Jennifer Wilcox, Stanford; Avi Gopstein of the U.S. Department of State; Doug Arent of the National Renewable Energy Laboratory and the Joint Institute for Strategic Energy Analysis; Steven Wofsy of Harvard University; Nancy Brown of the Lawrence Berkeley National Laboratory; independent consultant Richard Bradley; and Galen Stucky and Douglas Eardley, both of the University of California-Santa Barbara. The views expressed in the study are those of the authors, and do not necessarily reflect those of the U.S. Department of State or the U.S. government.
About 250 people took part in the Defend Our Coast Rally at Mount Elizabeth Secondary School, Saturday, Nov. 16, 2013. The Kitimat protest was part of what organizers said were 130 rallies across Canada to protest environmentally threatening energy developments including the Alberta bitumen sands and various pipeline projects under the labels of Defend Our Climate or Defend Our Coast.
A form of malaria that infects birds has been found in parts of Alaska, and scientists say the discovery is another indication of climate change in the north.
The spread could prove devastating to arctic bird species that have never encountered the disease and thus have no resistance to it, said San Francisco State University Associate Professor of Biology Ravinder Sehgal, one of the study’s co-authors. The study was published Wednesday, Sept. 19, 2012 in the journal PloS One.
The avian malaria parasite is related to the human form and so the bird study could help scientists track how climate change is affecting human malaria.
Researchers examined blood samples from both resident and migratory birds collected at four sites from 61°N to 67°N, with Anchorage as a southern point, Denali and Fairbanks as middle points. Coldfoot was the northern point, roughly 960 kilometres north of Anchorage. They found infected birds in Anchorage and Fairbanks as far north as 64°N, but not in Coldfoot
In migratory birds, samples were taken from both adults and hatchlings to see if the infection had occurred locally or during migration.
The study notes that the infected birds at 64°N were above the Arctic Circle commonly known to people across the region as “north of 60”)
Using satellite imagery and other data, researchers were able to predict how environments will change due to global warming — and where malaria parasites will be able to survive in the future. They found that by 2080, the disease will have spread north to Coldfoot and beyond.
“Right now, there’s no avian malaria above latitude 64 degrees, but in the future, with global warming, that will certainly change,” Sehgal said. The northerly spread is alarming, he added, because there are species in the North American arctic that have never been exposed to the disease and may be highly susceptible to it.
“For example, penguins in zoos die when they get malaria, because far southern birds have not been exposed to malaria and thus have not developed any resistance to it,” he said. “There are birds in the north, such as snowy owls or gyrfalcons, that could experience the same thing.”
Researchers are still unsure how the disease is being spread in Alaska and are currently collecting additional data to determine which mosquito species are transmitting the Plasmodium parasites that cause malaria.
The data may also indicate if and how malaria in humans will spread northward.
Modern medicine makes it difficult to track the natural spread of the disease, Sehgal said, but monitoring birds may provide clues as to how global climate change may effect the spread of human malaria.
The study is the fact that the malaria parasites were able to complete their transmission cycle in the North American Arctic” provides “empirical evidence that local hosts in the north of Alaska may be exposed to new parasites with impending global warming,” especially if there is increased variation of both day/night and season temperature changes. Rainfall is also a factor.
Both Anchorage and Fairbanks are likely to have suitable conditions for the avian malaria parasite “completion, other areas with high annual precipitation but mild precipitation and temperature seasonality would be predicted to also be suitable” for the parasite.
One form of the avian malaria parasite has been previously in four bird species: the Common Rosefinch (Carpodacus erythrinus) in South Korea, the Greater Scaup (Aythya marila), the Pacific Golden Plover (Pluvialis fulva) and the Common Yellowthroat (Geothlypis trichas) in the United States, and in six migratory species, meaning that form can tolerate cold temperatures.
The book Birds of British Columbia says the Greater Scaup is a common migrant on the BC coast and may winter in BC, and an abundant migrant in the BC interior in both spring and fall, and often winters in the Okanagan. The Pacific Golden Plover is rare in BC, because its migration route takes it toward the east coast. It is usually spotted in the Peace River region but has been seen occasionally near Massett and Boundary Bay. The Common Yellowthroat can be found through the BC mainland in the summer but is rare on Vancouver Island and Haida Gwaii.
A study in New Brunswick has shown that one form of mosquito that tolerates cold infects birds in that province. Although that mosquito is “rare” in Alaska, a close relative is common in the state and although the scientists were unable to find the source of the infection, that Alaskan mosquito could be a prime suspect.