Dilbit dangerous to young fish, laboratory study shows

Diluted bitumen, also known as dilbit, a mixture of oil sands bitumen and natural gas dilutants can seriously harm fish populations, according to research study at Queen’s University and the Royal Military College of Canada published this week.

At toxic concentrations, effects of dilbit on exposed fish included deformities and clear signs of genetic and physiological stress at hatch, plus abnormal or uninflated swim bladders, an internal gas-filled organ that allows fish to control their buoyancy. Exposure to dilbit reduces their rate of survival by impairing their ability to feed and to avoid predators.

Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois' lab. (Queen's University)
Post-doctoral fellow Barry Madison works with the fish in Valerie Langlois’ lab. (Queen’s University)

Among the other findings from the study were

    • Embryo toxicity of dilbit was comparable to that of conventional oils.
    • Developmental malformations increased with increasing dilbit concentrations.
    • Chemical dispersion broadened the genotoxic effects of dilbit

“This new study provides a clearer perspective on the potential risks to Canada’s aquatic resources of dilbit spills, and a technical basis for decisions on dilbit transportation within Canada,” says Peter Hodson Environment Studies, Biology at Queens. “It reduces some of the uncertainty and unknowns about the hazards of dilbit.”

This study characterized the toxicity and physiological effects of unweathered diluted bitumen (Access Western Blend dilbit; AWB) to a fish used for laboratory studies. Embryos of Japanese medaka (Oryzias latipes) were exposed for 17 days to dilutions of dilbit physically-dispersed by water and chemically-dispersed by dispersants

AWB dilbit exposure was not lethal to medaka, but resulted in a high prevalence of blue sac disease (BSD), impaired development, and abnormal or un-inflated swim bladders. Blue sac is a disease of young trout and other salmonid species; usually caused by unsuitable hatchery water. It turns the yolk sac bluish and is thought to be caused by a lack of oxygen.

The research was funded by Fisheries and Oceans Canada’s National Contaminants Advisory Group and the next stage will determine whether fish species native to Canada will be affected by dilbit exposure. The work also includes the development of genetic markers of exposure to dilbit and toxicity that could be used to assess whether wild fish that survive a spill are still affected.

The research team includes Dr. Valérie Langlois (Environmental Studies, Royal Military College of Canada) and Dr. Barry Madison (Royal Military College of Canada).

Dr. Hodson is also a member of a Queen’s research team tasked to determine whether dilbit spilled into rivers would contaminate bed sediments, specifically areas where fish such as salmon, trout, chars, whitefish and graylings spawn, to the extent that the survival of their embryos would be affected.

The research was published in ScienceDirect and is one of the first studies of dilbit on young fish.

The finding could be significant because both the proposed Northern Gateway pipeline and the proposed Kinder Morgan expansion will cross areas near spawning streams.

Kitimat Council endorses David Black’s Kitimat Clean refinery proposal

David Black
Publisher David Black chats with members of the environmental group Douglas Channel Watch, prior to Kitimat Council, May 5, 2014. (Robin Rowland/Northwest Coast Energy News)

District of Kitimat Council Monday endorsed, in a six to one vote, publisher David Black’s proposal for a refinery at Onion Flats north of Kitimat.

The motion, proposed by Councillor Mario Feldhoff was:

 

That the District of Kitimat write a letter to the Prime Minister, copying the Premier of BC, endorsing Mr. David Black’s Kitimat Clean refinery proposal and asking that it be supported  by senior levels of government, thereby reducing  environmental impacts and risks associated with the Northern Gateway, while significantly increasing economic value-added  and associated taxation benefits to the Pacif Northwest, BC and Canada.

The lone dissenting vote came from Councillor Rob Goffinet, who wanted a more generic motion, dropping direct references to David Black’s proposal and replacing it with the term “value added.”

Before the vote, Black made a presentation to Council outlining details of the proposal. Black will be hosting a public meeting on the proposal at Riverlodge at 7:30 p.m. Tuesday.

Ottawa’s Northern Gateway consultation with First Nations limited to three simple questions and 45 days: documents

The federal government’s main consultation with First Nations on the Northern Gateway Joint Review Panel report is limited to just three simple questions that had to be answered within 45 days, according to documents seen by Northwest Coast Energy News.

Joint Review Panel cover
Cover of Volume 1 of the Joint Review Panel ruling on Northern Gateway

That despite the fact that the first volume of the JRP report “Connections” is 76 pages and the second volume “Considerations” is 418 pages including the 209 recommendations and appendices and came after two years of hearings and tens of thousands of pages of evidence.

On Dec. 6 and again on Dec. 16, 2013, just prior to the release of the Joint Review Panel report, Brett Maracle, Crown Consultation Coordinator at the Canadian Environmental Assessment Agency for the Northern Gateway project wrote to the First Nations potentially affected by Northern Gateway, saying their response had to be filed within 45 days of the release of the JRP. Since the report was released on December 19, 2013, that made the initial deadline January 31, 2014.

The letter also told the First Nations that if they wanted their positions included in the “Crown Consultation Report” that would be part of the package on Northern Gateway presented to the federal cabinet, that position had to be limited to just two to three pages “given the number of groups involved” with a final deadline of April 16, 2014.

Maracle’s letters used the term Phase IV to define the post JRP consultations, implying there were three earlier stages of consultation, something many First Nations have disputed, especially since the Harper government had earlier maintained that the JRP itself was the constitutionally mandated consultation.

The cabinet has until June 19, 2014, 180 days after the release of the report to approve the issuing of the federal permits for the Northern Gateway project. Consultation with First Nations on projects such as the Northern Gateway is required by the Constitution and has been upheld by the Supreme Court of Canada.

The three questions outlined in the letter were:

  • Does the Report appropriately character the concerns you raised during the JRP process?
  • Do the recommendations and conditions in the Panel Report address some/all of your concerns?
  • Are there any “outstanding” concerns that are not addressed in the Panel Report? If so, do you have recommendations (i.e proposed accommodation measures) how to address them?

Consultation on implementation

The third question appears to confirm what most political observers have said, approval of the Northern Gateway by the Harper cabinet is a a forgone conclusion, since Maracle speaks of “accommodation measures.” When the JRP approved the Northern Gateway project, the panel said that Enbridge’s proposed “mitigation” measures in case of a spill were adequate, something environmental groups and First Nations are now disputing in court.

It appears from the correspondence seen by Northwest Coast Energy News, that the federal government will only consider further specific consultations with First Nations after the approval of the Northern Gateway and only then on the implementation and construction process, rather than consulting on the project as a whole.

The Haisla have filed a document in response to the JRP that notes that

The Haisla Nation needs to understand Canada’s views of the role that future federal decisions might play for the proposed project. In its December 12, 2013 to Mr. Maracle, the Haisla Nation asked the federal government to provide a comprehensive list of the regulatory permits which would be issued the the federal government decision-makers in Haisla Nation Territory in the event the proposed project is approved and describe the consultation process that would occur prior to decisions being on those regulatory permits, within 45 days of the issuance of the JRP Report.

Mr. Maracle’s January 29, 2014 [reply] suggests that the only future federal decisions on the proposed project which may entail consultation are specific watercourse crossing and fish habitat destruction permits issued by Fisheries and Oceans Canada.

Whole-of-government

One of the problems reaching back to long before the Joint Review Panel hearings began is that the Harper government policy was what they called a “whole-of-government” approach in its consultations with First Nations, saying: “The Crown is open to discussing how consultation with the framework provided will be carried out.”

In their repose, the Haisla say the federal government never defined how the “whole-of-government” approach to First Nations was going to work and noted:

What Canada should have realized is that it has a very real obligation to consult with the Haisla Nation at the deepest end of the consultation spectrum that cannot be pigeon-holed into a one size fits all approach.

Further, the term whole-of-government is misleading, as this approach actually prohibits the majority of government from engaging in consultation.

The Haisla then say: “Documents we have obtained under an Access to Information Request clearly indicate individual departments were asked not to communicate directly with the Haisla Nation.”

The response goes on to say:

Further questions at federal government witnesses during the JRP process confirmed that federal departments had not met with the Haisla Nation since the commencement of the JRP process. While these witnesses were reluctant to confirm that they had been prohibited from meeting with us, they repeatedly referred to the “whole-of-government” approach to consultation as their reason for not meeting.

Canada’s “whole-of-government” approach clearly limited engagement to a strict process with no opportunity for real engagement.

Earliest stages

The Haisla are telling the Harper government:

It is clear that the Haisla Nation that we are the very earliest stages of consultation with Canada about the proposed project….It is clear to the Haisla Nation that the 45-day period within which Canada has unilaterally determined face-to-face meetings with all the Aboriginal groups potentially affected by the proposed project will occur is not an adequate amount of time to complete a meaningful consultation process.

 

Related

Haisla ask cabinet to postpone Northern Gateway decision to allow for adequate consultation with First Nations

Haisla consultation reply outlines flaws in Northern Gateway Joint Review report

Haisla response lists evidence rejected by Northern Gateway Joint Review

Haisla consultation reply outlines flaws in Northern Gateway Joint Review report

Haisla NationThe Haisla Nation response to the federal government’s request for consultation on the Joint Review Panel report on the Northern Gateway lists what the First Nation sees as flaws in the panel’s assessment of the project. (The Haisla filed their first list of flaws in the JRP in a court challenge).

In the response, seen by Northwest Coast Energy News, the Haisla are objecting to both the government’s and the JRP’s attitude toward the idea of consultation as well as some of the specific findings by the panel. The Haisla also fault the JRP process for refusing to take into consideration reports and studies that were released after the evidentiary deadlines.

Overall, the Haisla say

 The JRP report is written in a way that prevents an assessment of how or whether the JRP considered Haisla Nation concerns and of how whether the JRP purports to address the Haisla Nation’s concerns. Further the JRP Report is lacking n some of the fundamental justification required to understand how arrived at its recommendations.

So what are the Haisla concerns?

In the document filed with the Canadian Environmental Assessment Agency, the Haisla say:

 The proposed project carries with it an inordinate amount of risk to Haisla Nation Territory. The Haisla Nation is being asked to play host to this proposed project, despite the risk the proposed project poses to the land waters and resources relied on by the Haisla Nation for sustenance and cultural heritage. The risk includes a huge risk to Haisla Nation aboriginal rights to trap, hunt and fish, to gather seafood and gather plant materials. It could result in significant damage to the Haisla Nation cultural heritage—its traditional way of life…..

The terminal site is one of the few areas suitable for terminal development in our territory. It is also home to over 800 Haisla Nation Culturally Modified Trees (CMTs). Northern Gateway proposes to irrevocably alter the land, the use of the land and access to this land for the duration of the proposed project, which is anticipated to be at least 80 years. This irrevocable alteration includes the felling of our CMTS….

By seeking to use Haisla Nation aboriginal title land for the proposed project, Northern Gateway will be effectively expropriating the economic value of this land. Northern Gateway is proposing to use Haisla Nation aboriginal title land for a project with no benefit to the Haisla Nation and which is fundamentally at odds with Haisla Nation stewardship principles.

 

Obstructed clear understanding 

The Haisla say that “Canada has failed to adhere is own framework” for the JRP because in the Aboriginal Consultation Framework says “Federal departments will be active participants in the JRP process to ensure the environmental assessment and consultation record, is as accurate and complete as possible.”

The Haisla say “Canada provided limited written evidence to the JRP” and goes on to say that the “federal governments not only failed to provide relevant information but also obstructed a clear understanding of project impacts.”

Among the evidence relevant to Northern Gateway that the federal government was “unable or unwilling to provide” includes:

  •  Natural Resources had expertise on acid rock damage and metal leaching but did not include evidence on that in their evidence
  •  Fisheries and Oceans did not have a mandate to conduct an assessment of the potential toxicological effects of an oil spill.
  •  Environment Canada did not review or provide information on the spills from pipelines.
  • The federal government witnesses were unable to answer questions about the toxicity of dispersant.
  • Environment Canada was asked if it had studies of the subsurface currents and the movement of submerged oil. Environment Canada told the JRP did not measure hydrodynamic data but relies on DFO. DFO cold not provide any witnesses to the JRP with expertise on subsurface currents.

 

In the formal response on the JRP report, Haisla also say:

  •  The JRP has concluded that the risk of a large spill form the pipeline in the Kitimat River Valley is not likely, despite very significant information gaps relating to geohazards, leak detection and spill response.
  •  The JRP has concluded that a large spill would result in significant adverse environmental effects. However, the JRP appears to base a finding that these effects are unlikely to occur on an unreasonable assumptions about how widespread the effects could be or how long they would last. The JRP has not considered the extent to which a localized effect could impact Haisla Nation.
  •  The JRP relies on the concept of “natural recovery” as mitigation of significant adverse effects. The Haisla Nation asked the JRP to compel information from Northern Gateway about the applicability of its evidence to species found in Haisla National Territory. The JRP, however, refused to compel this evidence from Northern Gateway.
  •  The JRP has accepted at face value that Northern Gateway would shut down its pipeline within 13 minutes in the event of a rupture and has failed to consider the effects of a large spill that is not detected with this timeframe through the control centre (or was in the case of Kalamazoo, is detected by the control centre but is systematically mischaracterized and ignored).

As part of the consultation process the Haisla want 22 changes to the JRP report, changes which echo the Haisla Final Written Argument that was filed at the end of the hearings.

It says:

 The Panel should find that potential impacts to asserted Haisla Nation aboriginal rights and title from the proposed project are such that project cannot be found to be in the public interest in the absence of meaningful consultation… The current status of engagement and the federal government imposition of a 6-month time limit to complete consultation raise serious concerns that meaningful consultation will not be possible. Therefore the proposed project is not in the public interest.

Among the others are:

  • The JRP should have determined the significant of adverse effects to rare ecological communities that cannot mitigated.
  • The JRP should have provided more information to allow a reasonable assessment of the risk of a spill from the pipelines.
  • The JRP would have considered all factors to contribute to the risk of a spill.
  • The JRP should have found that Northern Gateway’s assessment of the toxicity of an oil spill because it did not consider the full range of products to be shipped nor did it consider the potential pathways of the effect of a toxic spill, whether from a pipeline, at the marine terminal or in the case of a tanker spill
  • The evidence had not demonstrated that Northern Gateway’s spill response would be able to mitigate the effects of a spill either at the pipeline, at the Kitimat marine terminal or from a tanker spill.
  • The JRP did not consider the impact of the Kitimat Marine Terminal on their cultural and archaeological heritage, including culturally modified trees.

Related

Ottawa’s Northern Gateway consultation with First Nations limited to three simple questions and 45 days: documents

Haisla ask cabinet to postpone Northern Gateway decision to allow for adequate consultation with First Nations

Haisla response lists evidence rejected by Northern Gateway Joint Review

Haisla response lists evidence rejected by Northern Gateway Joint Review

Members of the Joint Review panel make notes at Kitamaat Village (Robin Rowland)
Members of the Northern Gateway Joint Review Panel, left to right, Kenneth Bateman, chair Sheila Leggett and Hans Matthews make notes at the June 25, 2012 hearings at the Haisla Recreation Centre, Kitamaat Village. A map of Douglas Channel can be seen behind the panel. (Robin Rowland/Northwest Coast Energy News)

The Haisla Nation in their response to the Crown on the Northern Gateway Joint Review Panel details four studies, three Canadian and one American that were released after the Joint Review evidentiary deadline had passed, evidence that the Haisla say should be considered in any consideration of the Northern Gateway pipeline, terminal and tanker project. (The American report from the National Oceanic And Atmospheric Administration was released after the JRP final report)

JRP chair Sheila Leggett’s constant citing of rules of procedure and her stubborn refusal to consider new evidence and studies in a dynamic situation that was changing rapidly was one of the reasons that many people in the northwest said the JRP had lost credibility.

The Haisla say: “It is incumbent upon Canada to consider and discuss the information in these reports as part of a meaningful consultation process…” and then lists “key findings” that have potential impacts on aboriginal rights and title:

The West Coast Spill response for the government of British Columbia which found:

  • Most oil spilled into the marine environment cannot be cleaned up
  • There is a disconnect between planning and actual repose capability
  • Canada’s spill response is “far from world class.”

The Transport Canada Ship Oil Spill Preparedness and Response study:

  • Douglas Channel will go from low risk to high risk for pills if the project goes ahead
  • The study recommends preparation for a “true worst case discharge” rather than “the credible worst case discharge” as proposed by Northern Gateway
  • Canada needed a much more rigorous regulatory regime covering tankers.

The joint federal government technical report on the properties of bitumen from the Canadian Oil Sands:

  • There are uncertainties on how diluted bitumen would behave in a marine environment.
  • Northern Gateway did not provide adequate information about sediment levels to allow for proper study of interaction with diluted bitumen
  • Dispersant may not be effective.
  • Weathered diluted bitumen would “reach densities at which it will sink freshwater without mechanical or physical assistance.”

The US National Oceanic And Atmospheric Administration report on Transporting Alberta Oil sands:

  • Diluted bitumen has “significant differences from conventional crudes.’ (The JRP used conventional crude as a benchmark in its findings)
  • The physical properties of diluted bitumen “fluctuate based on a number of factors.
  • Pipeline operators may not have detailed information related to products in the pipeline at the time of a spill
  • There is a lack of experimental data on the weathering behaviour of oil sands product which limits the ability of spill response organizations “to understand and predict the behaviour and fate of oil sands products in freshwater, estuarine and saltwater environments.”

 
Related

Ottawa’s Northern Gateway consultation with First Nations limited to three simple questions and 45 days: documents

Haisla ask cabinet to postpone Northern Gateway decision to allow for adequate consultation with First Nations

Haisla consultation reply outlines flaws in Northern Gateway Joint Review report

 

“Trust me is not good enough,” harsh BC government argument slams Enbridge, rejects Northern Gateway project

The government of British Columbia has filed a harsh assessment of Enbridge Northern Gateway in its final arguments submitted May 31 to the Joint Review Panel—much harsher than the government press release giving notice of the rejection suggests.

“‘Trust me’ is not good enough in this case,” the filing by BC government lawyer Christopher Jones says of Enbridge’s plans to handle any possible disaster from either a pipeline rupture or a tanker spill.

Some of the arguments from the province’s lawyers echo points about the Kitimat Valley raised by Douglas Channel Watch and the Haisla Nation, at one point, pointing directly to evidence from Douglas Channel Watch’s Dave Shannon.

The news release repeats Premier Christy Clark’s five conditions for the Northern Gateway and other projects, putting a positive spin on the much harsher legal argument.

“British Columbia thoroughly reviewed all of the evidence and submissions made to the panel and asked substantive questions about the project including its route, spill response capacity and financial structure to handle any incidents,” said Environment Minister Terry Lake. “Our questions were not satisfactorily answered during these hearings.”

“We have carefully considered the evidence that has been presented to the Joint Review Panel,” said Lake. “The panel must determine if it is appropriate to grant a certificate for the project as currently proposed on the basis of a promise to do more study and planning after the certificate is granted. Our government does not believe that a certificate should be granted before these important questions are answered.”

The provincial government has established, and maintains, strict conditions in order for British Columbia to consider the construction and operation of heavy-oil pipelines in the province.

  • Successful completion of the environmental review process. In the case of Northern Gateway, that would mean a recommendation by the National Energy Board Joint Review Panel that the project proceed;
  • World-leading marine oil spill response, prevention and recovery systems for B.C.’s coastline and ocean to manage and mitigate the risks and costs of heavy-oil pipelines and shipments;
  • World-leading practices for land oil spill prevention, response and recovery systems to manage and mitigate the risks and costs of heavy-oil pipelines;
  • Legal requirements regarding Aboriginal and treaty rights are addressed, and First Nations are provided with the opportunities, information and resources necessary to participate in and benefit from a heavy-oil project; and
  • British Columbia receives a fair share of the fiscal and economic benefits of a proposed heavy-oil project that reflect the level, degree and nature of the risk borne by the province, the environment and taxpayers.

Final argument

In its filing the province tells the JRP:

While the Joint Review Panel (“JRP”) may of course consider other factors in its recommendation, the Province submits that the JRP must accord very significant weight, in the case of this project, to the fact that NG’s plans for terrestrial and marine spill response remain preliminary and that it cannot, today, provide assurance that it will be able to respond effectively to all spills. Given the absence of a credible assurance in this regard, the Province cannot support the approval of or a positive recommendation from the JRP regarding, this project as it was presented to the JRP.

In the alternative, should the JRP recommend approval of the pipeline, the JRP must impose clear, measurable and enforceable conditions that require NG to live up to the commitments it has made in this proceeding.

Hazards from Kitimat’s geoglacial clay

The provincial government identifies a major potential hazard in the Kitimat valley, glacio-marine clay deposits that “threaten the integrity of the pipeline.”

Overall the province appears to accept the arguments from Douglas Channel Watch and other environmental groups that geo hazards along the pipeline route present a significant risk, one perhaps underestimated by Enbridge Northern Gateway.

NG does not dispute that spills from the pipeline may occur. While the project will be new, and built using modern technology, the fact remains that pipeline spills do happen. Indeed, Enbridge had 11 releases greater than 1000 barrels between 2002 and 2012…

The Province has concerns about the assertions NG has made regarding the probability for full-bore releases resulting from geohazards. NG asserts that full-bore spills will be very rare. However, this assertion must be considered in light of the fact that NG’s analysis of the geohazards that the pipeline could face is at a preliminary stage….

The rugged topography of West Central British Columbia is prone to slope failures.
Terrain instability may pose significant challenges for linear development.
Despite these challenging admits that its assessment of existing and potential geohazards along the pipeline route is not complete and that further investigations and more detailed geohazard mapping are required. For instance, although NG acknowledges that the potential presence of glacio-marine clays in the lower Kitimat Valley can threaten the integrity of a pipeline; its report on glacio-marine clay fails to identify a significant area of potential instability that had been previously reported in the relevant literature…

Since all geotechnical hazards have not been identified with the investigations carried out to date, and since comprehensive investigations will not be completed until the detailed design phase, NG has but a rough idea of the mitigation measures that may be employed in order to mitigate the geotechnical hazards that may be encountered…

Spill response

The province’s arguments also indicates that Enbridge Northern Gateway has not done a good enough job regarding spill response, whether from a full bore rupture or a pin hole leak.

it must be remembered that full-bore spills are less frequent than smaller spills, which could still have a significant environmental effect. Indeed, since risk equals consequence times probability, smaller spills could pose a higher risk as they are more frequent. While NG has produced considerable evidence with respect to the likelihood and effects of full-bore spills… the evidence concerning the potential for other spills is limited. While the Province supports assessing the effects of any spill based on a full-bore release, as it would allow for an analysis of the worst-case scenario, focus on full-bore releases should not eliminate consideration of the potential impact of smaller events…

NG stated that [a] table [in the evidence], which includes probabilities for medium sized spills, would be “replaced by. a detailed characterization of each pipeline kilometre and region as part of the ongoing risk assessment work,” but the province says, a later table that “now replaces the concept of large and medium spills”. focussed only on full-bore releases, a relatively rare event.

Similarly, NG also calculated spill return periods for pinhole and greater-than-pinhole events. Taking the figures NG for “greater-than-pinhole” releases results in a spill return figure of 76.7 years. The Province also has concerns about the information that NG has provided in this regard. First, because it focussed on spill events, there is no information about spill size, which, we submit is a critical issue in considering the risk posed by these kinds of events. Second, NG does not include the potential for spills that could occur as a result of “operating and maintenance procedures” that deviate from the norm. Finally, NG assumes that all geotechnical threats would result in a full-bore rupture. This assumption appears to be incorrect…

Premier Christy Clark has, as part of her five conditions, said there must be a world class spill response system. Enbridge responded by saying there will be. The province then turns around and says Enbridge has failed to do prove it.

Because of the potential for spills, and their impact, NG has committed to develop a comprehensive spill response capability. Indeed, NG has stated that it intends to have a “world-class response capability” for the Project. Given the real potential for spills to occur, and the devastating effect of a spill should a significant one take place, the Province submits that NG must show that it would be able to effectively respond to a spill. As set out below, the Province submits that it has failed to do so.

High stream flow, heavy snow at Kitimat

Again, the province appears to accept arguments from Douglas Channel Watch that Enbridge has underestimated the challenges of handling a spill in a remote area. The province also accepts the argument that booms are ineffective in high stream flow in the Kitimat River.

Although it asserts that it will be able to effectively respond to any spill, NG admits that responding to a spill from the pipeline will be challenging. In particular, it admits that a spill into a watercourse at a difficult to access location would present the greatest difficulty for clean-up and remediation…

Many parts of the pipeline will be located in remote areas, located some distance from road networks and population centres. For example, many of the rivers… are identified as remote or having no access. Road access to the pipeline and places where a spill might travel down a watercourse is important to allow for effective spill response…

In some cases, the steepness of the terrain will make responding to spills very challenging. NG acknowledges that the Coast Mountains’ topography is extreme…

As the JRP noted during cross examination by the Province of NG with respect to the Clore River, it has had the opportunity to take a view of the entire route. It will therefore know the steep and rugged terrain through which the pipeline would pass.

The presence of woody debris could also pose a challenge to spill response, requiring a shift of response activities to upstream locations…

If a spill were to occur during a period of high flow conditions, a common occurrence in British Columbia rivers, then some aspects of the response may have to be curtailed, or at least delayed until the high flow event recedes. At certain water velocities, booms become ineffective, and are potentially unsafe to operate.

The presence of heavy snow could also impede access during response operations, requiring use of snowmobiles, snow cats, and helicopters. In the Upper Kitimat and Hoult Creek Valleys, snow accumulation can reach 8-9 metres. However, weather may limit the ability of helicopters to aid in spill response…

Many of these challenges are recognized by NG. In the Preliminary Kitimat River Drainage Area Emergency Preparedness Report (“Kitimat Report”), NG refers to the challenges of winter conditions, avalanches and debris slides, heavy snow, spring melt, Fall freeze-up, patchy ice, and fast-flowing watercourses.

Sinking dilbit

The province also accepts the argument that under some circumstances that diluted bitumen can sink, arguments raised by David Shannon of Douglas Channel Watch.

These challenges are compounded by the fact that in certain conditions diluted bitumen (“dilbit”) can sink in a watercourse. This occurred in the case of Enbridge’s spill in Michigan. This was, as a result, an issue of significant importance to the parties in this proceeding…

The evidence presented by NG in this regard is inconsistent. For example, some evidence it presented suggests that dilbit may sink when it enters water, after a process of weathering; other evidence it has submitted suggests that dilbit will only sink if it combines with sediment. In its response to [a submission by the Haisla Nation] NG states that “If diluted bitumen becomes heavily weathered some oil may sink in fresh water environments.” Similarly, in its response to Dave Shannon’s IR No. 1, NG states that 

Diluted bitumen emulsions will remain buoyant in waters with densities greater than approximately 1.015 g/cc. If the water density drops below approximately 1.015 g/cc,in zones of fresh-water intrusion, weathered and emulsified diluted bitumen products may sink to the depth where the density increases to above 1.015 g/cc.

Similar also is NG’s response to Dr. Weir’s IR No. 2.6, where NG states:

The weathered diluted bitumen would have a density approaching 1.0 g/cc, which indicates that once the diluted bitumen weathers it may be susceptible to sinking in fresh water.

Finally, in the Kitimat Report NG states that:

Examples that may lead to oil not remaining on the water surface include:
• Oils with specific gravities equal to or greater than the receiving medium (fresh- or saltwater)
• Oils that have weathered and, in losing lighter-end fractions, have reached a specific gravity equal to or greater than the receiving water
• Oil that is near the same density as the receiving water and that is characterized as a 3-dimensional flow (non-laminar to turbulent flow such as found in streams, rivers, areas with fast tidal currents, breaking waves)
• Oil with sediment (mixed into oil or adhered to oil droplets)…

…submerged oil may eventually sink with increased weathering, if in receiving water with lower density, or if sufficient sediment is incorporated.

Northern Gateway contradictory

The province’s argument goes on to point more inconsistencies with Northern Gateway’s submission on dilbit in rivers, telling the JRP “In short, what dilbit will do when it enters water remains unclear.”

On the other hand, another NG witness stated that dilbit cannot sink, as this would be contrary to an “immutable fact of physics”. In cross examination, Dr. Horn, Mr. Belore and other witnesses maintained that dilbit will only sink in the presence of suspended solids, or after a long period of weathering.

However, NG’s evidence with respect to the type of sediment that could combine with dilbit to form material that may sink in water is unclear. Dr. Horn testified that “fine grain sediments…provide the greatest amount of surface area which is one of the reasons that oil sank in [Michigan]”. On the other hand, Mr. Belore appeared to suggest that, in the marine context at least, finer sediments reduce the potential for oil to sink as they are lighter. The evidence with respect to the material that may bind to dilbit and contribute to its sinking is unclear…

NG’s views with respect to the flow conditions under which dilbit may sink is also contradictory. On the one hand, it states that “Higher flow rates and increased turbulence typically will entrain more oil into the water column leading to the potential for oil to enter pore spaces in permeable sediments.” On the other, it states that “Oil sinking is unlikely to occur in areas with fast currents…”

Evidence provided by other parties suggests that dilbit may sink when weathered. In particular, Environment Canada’s evidence in this proceeding contrasts sharply with NG’s. For example, Environment Canada states that:

Northern Gateway’s response planning model does not account for sinking oil or for oil suspended particulate matter interactions…For oils with densities close to that of water, like both the diluted bitumen and synthetic crude products, even small amounts of sediment can cause sinking. Environment Canada is concerned that oil sinking and oil-sediment interactions have been
underestimated in the provided scenarios. In the cases of both the Enbridge-Kalamazoo and the Kinder Morgan-Burnaby spills, significant oil-sediment interactions occurred.

The changes to dilbit as it ages in the environment may affect cleanup. Although initially buoyant in water, with exposure to wind and sun, as well as by mixing with water and sediment in the water, the density of dilbit can increase to the point that the oil may sink. Recovery and mitigation options for sunken oils are limited.

Not only has Environment Canada expressed the view that even small amounts of sediment may cause oil to sink, its witness also stated under cross-examination that high velocity rivers may carry high suspended sediment concentrations, and that, at certain times of the year, sediment load could enter the marine environment. Although NG acknowledges that sediment loads and oil-sediment interactions are a critical factor in predicting the behaviour of spilled oil, it has not, in Environment Canada’s opinion, provided a complete baseline data set on sediment loads, despite requests that such data be provided.

While NG has submitted information respecting the laboratory testing of dilbit, an Environment Canada expert testified that tests conducted in a laboratory setting provide only limited information that cannot be relied upon in isolation to predict the fate and behaviour of hydrocarbons spilled into the environment. Instead, information gathered from real spill events must inform the analysis, and consideration must be given to the conditions, including water temperature, suspended sediment concentrations and wind speed, to be encountered in the “real world”.

Environment Canada has also made it very clear that the evidence provided to date by NG does not allow for a full understanding of the behaviour of spilled dilbit. In the opinion of Environment Canada witnesses, the evidence has not provided sufficientclarity with respect to the weathering, evaporation or sedimentation processes dilbit may be subjected to in the environment. Given the unique nature of this product, further research is warranted before one can ascertain whether dilbit will sink or remain on the water surface. Those concerns were echoed by an expert retained by the Gitxaala Nation.

In addition, the evidence of other parties raises the possibility of the need to respond to submerged oil. NUKA research, on behalf of the Haisla Nation, opined that “submission documents overall still grossly underestimate the potential for sunken or submerged oil, particularly for pipeline spills to rivers.” EnviroEmerg Consulting, for the Living Oceans Society summarizes well the uncertainty that remains with respect to the behaviour of oil:

There are no definitive statements in the [Environmental Impact Statement] EIS to explain if bitumen diluted with condensate will emulsify, sink or do both if spilled. The supporting technical data analysis in the EIS is based on laboratory tests. There are no in-situ field tests, empirical studies, nor real incidents to validate these findings. This raises significant uncertainty that current spill response technologies and equipment designed for conventional oil can track and recover the diluted bitumen in temperate marine waters. In essence, the assumption that the diluted bitumen can be recovered on-water has yet to be tested.

In short, what dilbit will do when it enters water remains unclear. NG recognizes this lack of clarity itself. As was stated by one of its witnesses, “it’s extremely difficult to predict the behaviour of this product”.

NG admits that additional research needs to be done with respect to understanding how dilbit behaviour.

The provincial argument concludes:

The Province has serious concerns about the lack of clarity and certainty about what dilbit will do if it were to enter the water, the preliminary and indeed contradictory nature of the evidence with respect to NG’s remediation strategies and actions to address sunken oil, and the fact that its proposed tactics have not been evaluated for use in British Columbia. These factors, taken together, suggest that, at least as of today, NG is not yet prepared to deal with sunken oil in the event there were a spill of dilbit into a British Columbia watercourse. By itself this is a cause for serious concern in relation to the fundamental question in this proceeding, namely whether the JRP should recommend approval of this project. But at the very least, this means that a strong condition must be imposed requiring further research on the behaviour of dilbit.

Spill response only preliminary “All roads are driveable”

The provincial argument says, in italics, that the Northern Gateway’s spill response plans are “only preliminary” and adds Northern Gateway’s plan to provide detail operational plans six months before the beginning of the pipeline operations is not good enough. “It is not possible for NG to assert, nor for the JRP to conclude, that NG will be able to access all those places where a spill may travel, and to respond effectively.”

Despite the challenges to responding to a spill from the pipeline, including the challenge of responding to submerged and sunken oil, NG’s plans for responding to a spill have not yet been developed. NG has committed only to providing its detailed oil spill response plans to the National Energy Board 6 months in advance of operations. In the context of this project, the Province remains very concerned that NG has not yet demonstrated its ability to respond effectively to spills from the pipeline.

When specifically asked “In the absence of that planning…to address the challenges that we’ve been discussing, how is it we are to be confident that Northern Gateway will, in fact, be able to effectively respond to a spill?” NG replied that “There is a lot of work that needs to be done.”

Of particular concern, despite its admission that a spill into a watercourse in a remote location would pose a significant challenge, NG has not yet determined those locations it could access to respond to a spill, including the control points utilized for capturing and recovering oil passing that location. Such access will only be determined, if possible, during detailed planning. At this time, NG also does not know what portion of water bodies would be boat-accessible in the event of a spill. The 2010 Michigan spill, which was the subject of much questioning during the hearing, occurred in a populated area, where there were many potential access locations. This will of course not be the case if a spill were to occur in a remote river in British Columbia.

While NG has prepared a document showing some possible control points that might be used for spill response in the event of a spill in some rivers, NG concedes that its work in this regard is preliminary, and only pertains to some of the control points that would ultimately have to be established. NG helpfully provided additional information to that which was originally filed with respect to the travel distance between pump stations or the terminal and certain potential control points. However, travel times to the control points that have been identified do not take into account mobilization time, and assumes all roads are drivable.

Given the incompleteness of NG’s evidence in this regard, the Province submits that NG cannot currently assert that there would in fact be viable control points where a spill could travel to. In addition, even if accessibility to control points had been fully validated, in order for NG to assert that it could respond effectively to a spill, it would also have to know the means by which personnel and equipment would gain access to respond to oil that had come ashore or sunken to the sediment. Given the preliminary nature of the evidence presented by NG, this is of course not known.

The Province is very concerned that, in the event of a spill, some places where a spill could reach will be inaccessible, and therefore not amenable to spill recovery actions. While NG states that it will be able to access control points at any location along the pipeline, it has simply not provided the evidence in this proceeding to substantiate this assertion. The Province submits that, as of today, it is not possible for NG to assert, nor for the JRP to conclude, that NG will be able to access all those places where a spill may travel, and to respond effectively.

In addition to access, there are a number of other challenges to operating in British
Columbia in respect of which NG has completed only very preliminary work.

• The pipeline could be covered by heavy snow at different times of the year; NG states that it will have to review alternative methods of access to deal with this, but has presented no specific evidence on how this challenge will be addressed.
• NG has not yet developed specific plans about how it would deal with oil recovered from a spill, and has not yet determined disposal locations.
• NG has not yet determined the location or the contents of the equipment caches to be used to respond to spills.
• It has not determined year-round access to the pipeline, which will be evaluated as part of detailed planning.

Kitimat River response

The province takes a harsh look at Northern Gateway’s plan for a response on the Upper Kitimat River and Hunter Creek.

Similarly, the Province is concerned about the ability of NG to respond to a spill in the Upper Kitimat Valley. When asked by the Douglas Channel Watch

“…in the context of the Upper Kitimat Valley, does this mean because of the steepness of the terrain and limited road access to the river, that containment at some locations at the source will be impossible, and the majority of your efforts will be at the first accessible locations downstream?”

NG was only able to reply that:

“again it depends on the specific conditions. But as Dr. Taylor indicated, in the development of the response plans we would need to look at various scenarios, various times of year, develop plans so that it would identify the appropriate response locations at those times.”

NG’s targeted spill response time of 6-12 hours needs to be set against the reality that, in the case of a watercourse spill, oil may travel many kilometres downstream while NG is still mobilizing. In this proceeding NG has provided considerable information with respect to how far and fast oil can travel in a watercourse. For example, with a spill into Hunter Creek, NG has stated:

Based on water velocities, a release at this location could reach the Kitimat River estuary 60 km downstream within four to ten hours, depending on river discharge.

Dr. Horn has indicated that these figures are very conservative, and that the actual times to reach Kitimat would be a longer period. However, no other definitive evidence on these times was presented by NG.

Enbridge doesn’t learn from its mistakes

The provincial argument then goes on to say, again in italics, Enbridge does not follow procedures or learn from mistakes and concludes “while NG asserts that its spill detection systems will be world-class, it has not yet chosen to adopt spill detection technologies that would achieve that objective.”

The provincial argument goes over Enbridge’s spill record in detail, including the Marshall, Michigan spill which was harshly criticized by the US National Transportation Safety Board.

Concerns about NG’s inability to respond to a spill are magnified by Enbridge’s conduct with respect to the spill which took place in Michigan. NG concedes that, in that case, there were procedures in place that were not followed. NG asserts that it now has in place a number of “golden rules”, including that whenever there is a doubt with respect to whether the spill detection system has detected a leak, the pipeline must be shut down. However, NG concedes that this rule was in place before the Michigan spill; it self-evidently was not followed. In fact, the rule under which Enbridge would shut down its pipeline system within 10 minutes of an abnormal occurrence which could be immediately analyzed was put into place following a spill in 1991. At that time, similar commitments were made indicating that procedures would change and that a spill of that nature wouldn’t take place again….

despite the fact that the relevant technologies had been in existence for some
10 years, and despite the existence of crack-related failures that led to the development of such technologies, Enbridge had failed to put in place a program that would have detected the Marshall spill

The province wraps up the response saying by telling the JRP:

In short, if NG is relying on its ability to respond effectively to a spill for a positive recommendation from the JRP, then it must show that it will in fact have that ability. The Province submits that NG has not shown that ability in this proceeding.

The Province submits that requiring NG to show now that it will in fact have the ability to respond effectively to a spill is particularly important because there will be no subsequent public process in which that ability can be probed and tested. NG has pointed out that its oil spill response plans will be provided to the NEB for review, and has committed to a third party audit of its plans. However, it also acknowledges that there will be no means by which those plans could be tested through a public process.

On the pipeline project, BC concludes

The Province submits that the evidence on the record does not support NG’s contention that it will have a world-class spill response capability in place. The challenges posed by the pipeline route, the nature of the product being shipped, the conceptual nature of its plans to date and Enbridge’s track record mean that the Province is not able to support the project’s approval at this time. The Province submits that its concerns in this regard should be seriously considered by the JRP as it considers the recommendation it will be making to the federal government.

PART ONE: What the State Department Keystone EIS says about Kitimat

The United States Department draft Environmental Impact Statement (EIS) not only had to evaluate the main subject, the controversial Keystone XL pipeline project, but possible alternatives as well.

So that’s why the EIS took a couple of looks at Kitimat, with two possibilities for replacing the Keystone XL with a Kitimat terminal.

• Rail to Vancouver or Kitimat, British Columbia and tanker to the Gulf Coast area refineries
• The proposed Nothern Gateway Pipeline project.

The study doesn’t just include various forms of diluted bitumen from the Alberta bitumen sands, but  petroleum products from the Western Canadian Sedimentary Basin (WCSB) and crude oil from the Bakken shale shipped to the refineries on the US Gulf Coast which would be served by the Keystone XL pipeline if it was not approved.

The EIS examined the Northern Gateway project and rejected the Enbridge pipeline as a possibility for Alberta bitumen and crude because of the continuing controversy.

However, a reading of the report shows that there could be pressure in the future for a bitumen or crude export terminal at Kitimat that would be served by the existing CN rail line (even though the State Department report prefers Prince Rupert as the best choice as an alternative to Keystone).

Enbridge is proposing to construct the Northern Gateway pipeline, which would transport up to 525,000 bpd of crude oil 1,177 km from Bruderheim, Alberta, to the Port of Kitimat, British Columbia. The port would be improved with two dedicated ship berths and 14 storage tanks for crude oil and condensate. Enbridge intends for the pipeline to be operational around 2017. A regulatory application was submitted in 2010, which is undergoing an independent review process led by the Canadian National Energy Board and the Canadian Environmental Assessment Agency. The pipeline would traverse First Nation traditional lands and important salmon habitat. The project has been controversial and has encountered opposition from some
First Nation bands and other organizations. Opposition to the project remains strong as evidenced by media reports of the January 2013 public hearings in Vancouver on the permit application. It remains uncertain at this time if the project would receive permits and be constructed, and therefore the option of moving additional crude to Kitimat was eliminated from detailed analysis.

The report goes on to say that Enbridge is moving the target for the Northern Gateway due the controversy and the longer than expected Joint Review Panel hearings

Enbridge is now stating in investor presentations that the Northern Gateway pipeline
(525,000 bpd expandable to 800,000 bpd) may be operational by “2017+”

However the State Department report does seriously consider transportation of WCSB crude by rail to Vancouver, Kitimat and Prince Rupert. The report takes an in-depth look at the railway to Prince Rupert option.

One reason is that even if it is transported by rail, the market in Asia is still more attractive to the energy industry than using Kitimat or Prince Rupert as a possible terminal for export to the US Gulf.

The transportation costs of shipping to Asia via the Canadian or U.S. West Coasts
would be significantly cheaper than trying to export it via the U.S. Gulf Coast.

The total per barrel cost of export to Asia via pipeline to the Canadian West Coast and onward on a tanker is less than just the estimated pipeline tariff to the U.S. Gulf Coast for the proposed Project, and is less than half the cost of the Gulf Coast route to Asia. If pipelines to the Canadian West coast are not expanded or approved, even incurring the additional cost of rail transport to the West Coast ports (Vancouver, Kitimat, or Prince Rupert), estimated at $6 per barrel, results in a total transport cost to Asia that is still 40 percent cheaper than going via the Gulf Coast Absent a complete block on crude oil exports from the Canadian West Coast, there would be little economic incentive to use the proposed project as a pass through. The high costs of onward transport to other potential destinations tend to mitigate against WCSB heavy/oil sands crudes being exported in volume from the Gulf Coast.

The EnSys 2011 study found that the rail systems of the United States and Canada were not at that time running at capacity, that there is significant scope to expand capacity on existing tracks through such measures as advanced signaling, and that adequate cross-border Canada/U.S. capacity exists to accommodate growth in rail traffic that would be associated with movements at the level of 100,000 bpd cross-border increase per year or appreciably higher. In addition, rail lines exist to ports on the British Columbia coasts (notably Prince Rupert, Kitimat, and Vancouver), which could be used for export of Western Canadian crudes.

And later in the report:

both of these proposed pipeline projects to Canada’s West Coast face significant
resistance and uncertainty, but there are strong cost advantages when compared with moving WCSB crude to the Gulf Coast even if rail were used to access the Canadian West Coast In fact, using rail and tanker to ship crude oil from the WCSB via the West Coast to China is comparable to the pipeline rate to reach the U.S. Gulf Coast. An increase in the transport costs to the Gulf Coast (utilizing alternative transport options such as rail) would have a tendency to increase the
economic incentive to utilize any West Coast export options, if they are available.

The report also notes the change in Canadian laws in the omnibus bills pushed through by Stephen Harper’s Conservative government:

Also not examined above, are more speculative political impacts that might occur as a result of a decision on the permit application for the proposed Project. In 2012, the Canadian government enacted new laws changing the way some major infrastructure projects, such as pipelines, are reviewed. Among the changes made were limits on the amount of time for such reviews. A declared intent was to promote alternative routes for the export of WCSB crude oils, especially
ones that would reduce reliance on the United States as, essentially, the sole market option.

In other words, even if Northern Gateway is stopped, there could be considerable pressure to export bitumen and crude oil from Alberta not only through Prince Rupert, the site preferred by the State Department EIS, but though Kitimat as well.

That might just open the door for David Black’s proposed $16 billion refinery at Onion Flats near Kitimat. As noted elsewhere on the site Black has possible investors for construction of a new oil refinery approximately 25 kilometers to the north of Kitimat BC on a 3,000 hectare site.

Black’s Kitimat Clean website says the refinery would process 550,000 barrels per day (87,445 cubic meters per day) of diluted bitumen from the oilsands region of Alberta delivered to the site by pipeline or by rail. The diluent will be extracted at the refinery and returned to Alberta if needed there. If not, it would be processed into gasoline. The bitumen will be converted into fuel products, primarily for export.

Black’s plans call for connecting the Northern Gateway bitumen Pipeline to the site. From the refinery six dedicated product pipelines will run to a marine terminal on the Douglas Channel. The Douglas Channel is a wide and deep fjord. VLCC (Very Large Crude Carrier) tankers will transport the refined fuels to markets around the Pacific Rim.

If the Northern Gateway is stopped, Black’s plans call for 12 additional 120 car trains running through every day. (Six in each direction)
Northwest Coast Energy News Special report links

What the Keystone Report says about Kitimat and Northern Gateway
What the Keystone Report says about the Kinder Morgan pipeline to Vancouver.
What the Keystone Report says about CN rail carrying crude and bitumen to Prince Rupert.
The State Department Environmental Impact Study of the railway to Prince Rupert scenario.

State Department news release

State Department Index to Supplemental Environmental Impact Study on the Keystone XL pipeline

 

PART TWO: What the State Dept. Keystone EIS says about Kinder Morgan and Vancouver harbour

The US State Department report on the controversial Keystone XL pipeline project also looks at the Kinder Morgan Transmountain pipeline (both the existing line and the proposed second line) and, in at least one part of the report, seems to speculate that, once expansion of the Panama Canal is completed in 2014, there could be larger tankers in Vancouver harbour, something that up until now, both Kinder Morgan and Port Metro Vancouver have denied. However, the State Department report does not say how the port of Vancouver could handle larger tankers.

The State Department EIS says if larger tankers were loaded at Vancouver, it could be economic for crude from the Kinder Morgan Transmountain pipeline to be moved to the US Gulf Coast.

Using heavy crude as a basis, a present day movement via Trans Mountain to Vancouver and thence on a Panamax tanker via the Panama Canal to Houston would have a total freight cost (pipeline tariff plus tanker freight and Panama toll) of around $8.50-9.50/barrel (bbl).

Recognizing that Kinder Morgan plans to enable future shipment in larger Suezmax tankers, and that the Panama Canal Authority is expanding the Canal to take tankers of that size, the rate using a Suezmax would be approximately $1/bbl lower. These rates compare to approximately $8/bbl to move heavy crude via pipeline from Hardisty to Houston. Thus, while in normal markets, a tanker movement from Western Canada would be somewhat more costly than via pipeline, in a scenario where ability to move WCSB crudes by pipeline to the U.S. Gulf Coast were constrained, refiners in the U.S. Gulf Coast could opt for tanker transport.

(The Panama Canal expansion program began in 2006 and is scheduled for completion in 2014)

Latest progress report (pdf)

According to the progress report the current Panama Canal has the capacity for ships that are 32.3 metres wide by 304.6 metres long, This will increase to 49 metres wide by 366 metres long.

Later in the report the State Department goes on to say that bitumen and crude could, as an alternative to Keystone, go to Vancouver:

Under this option, WCSB [Western Canada Sedminetary Basin] would be shipped by existing railways or new pipelines from the Hardisty region to Vancouver or Kitimat, British Columbia for shipment by marine transport through the expanded Panama Canal and delivery to Gulf Coast area refiners. This option considers moving up to 730,000 bpd of heavy crude to the Port of Vancouver and then to the marine docks at the Westridge marine terminal in Vancouver or the port in Kitimat. Under this option, crude oil could move either via rail or by a new pipeline from the Hardisty region.

Currently, Kinder Morgan is planning an expansion of the existing Trans Mountain pipeline originating at Edmonton, increasing its capacity from 300,000 bpd (current) to up to 890,000 bpd(planned for operations in 2017).

The Trans Mountain pipeline runs into Vancouver via the existing Burnaby terminal over to the Westridge dock for loading heavy crude onto vessels. The pipeline has sufficient commitment from shippers to proceed with engineering and permitting processes. Kinder Morgan indicates that the project would significantly increase tanker traffic from about 5 to 34 cargoes per month, or up to about 400 cargoes per year . The increased marine traffic is due to increased volume to be shipped, and lack of sufficient channel draft to load larger vessels.

Kinder Morgan on its website says

The proposed expansion at Westridge Terminal is based on the loading of Aframax tankers, the same tankers currently being loaded at Westridge. Larger tankers are not permitted in the Vancouver harbour, and are not under consideration for the expansion. Proposed changes at the dock include new loading facilities, fire protection, vapour recovery, secondary containment, and emergency response equipment.

To connect the Burnaby Terminal with the Westridge Terminal, the proposed expansion includes two new, four-kilometre pipelines each with a diameter of 762 millimeters (30 inches). These two new delivery lines would provide product deliveries to tankers at two new dock berths, and provide the scheduling flexibility required for a marine operation.

Port Metro Vancouver also says on its website:

The role of Port Metro Vancouver is to conduct a rigorous project review to ensure the safe movement of goods through the Port. Kinder Morgan has yet to submit a formal project proposal to Canada’s National Energy Board. If they do, and should approval be granted, the project would then undergo several other permitting processes, one of which is a Port Metro Vancouver Project Permit Review. Vancouver is a very low volume tanker port. Currently, there are about 100 crude oil and chemical tankers calling the port each year. If the Kinder Morgan project receives approval, that number could increase to approximately 400 tankers a year. Other well-run ports such as the Port of Rotterdam handles 8,206 tankers a year, while Singapore handle 22,280 tankers a year.

Will larger tankers be calling at Port Metro Vancouver as a result of the Kinder Morgan Proposal?

There are no plans to exceed the current maximum size of tankers calling at Port Metro Vancouver. Due to depth restrictions in the Burrard Inlet, the largest dimension of tanker that can be handled is the Aframax, a medium-sized tanker with a maximum capacity of 120,000 tonnes. Even then, these vessels can load to only around 80% of capacity due to draft restrictions.

 

The State Department EIS was cautious about the Kinder Morgan project and did not do the same deailed analysis as it did for Prince Rupert.

The substantial increase in tanker traffic from the proposed Kinder Morgan expansion has raised safety and environmental concerns. Moving additional volumes of crude oil from the proposed Project into the Vancouver market by either a new pipeline or rail would result in 400 or more additional vessels loading at Vancouver each year and would require considerably more storage to be built than the current Kinder Morgan operations. The expansion of storage capacity, potential rail off-loading facilities and logistics, and increased marine traffic may make this option logistically challenging in a relatively compressed and populated geographical area.

Moreover, even if a separate pipeline from Hardisty could be planned, mapped, engineered, designed, and permitted starting today, it would likely not be available as an option until well after the proposed [Keytsone] Project’s planned start date. As a result of the logistical challenges in increasing the amounts of heavy Canadian grades of crude oil coming into the Vancouver/Burnaby region over and above the volumes from the Kinder Morgan expansion, this option was deemed to be less viable than movements from Kitimat and Prince Rupert and was eliminated from detailed analysis.

It’s not clear from the Keystone EIS, if the State Department was simply speculating on larger tankers in Vancouver harbour or if it was made of aware of possible hopes for a deep water tanker port elsewhere in the Vancouver harbour area.

 

Port Metro Vancouver tanker diagram
Port Metro Vancouver diagram showing the tankers that are permitted and not allowed in Vancouver harbour. (Port Metro Vancouver)

 

The State Department EIS goes on to note:

While no new additional pipeline capacity has been added from Canada into the United States or to the Canadian West Coast since the Final EIS in 2011, a number of projects are proposed, including this proposed Project. The 300,000 bpd Kinder Morgan Trans Mountain pipeline that runs from Edmonton to the British Columbia coast at Vancouver, with a spur to Washington State refineries, has been over-subscribed for some time. A successful open season led the Kinder Morgan to announce and file for expansion to 750,000 bpd by potentially 2017. After a
second open season, Kinder Morgan has increased the expansion to 890,000 bpd. The bulk of the incremental crude moved on the line would potentially be destined for Asia. The review process for this project is continuing, but there is significant opposition based on concerns over environmental impacts associated with the oil sands and with additional tanker movements in the Port Vancouver harbor.

As noted above, both of these proposed pipeline projects to Canada’s West Coast face significant resistance and uncertainty, but there are strong cost advantages when compared with moving WCSB crude to the Gulf Coast even if rail were used to access the Canadian West Coast... In fact, using rail and tanker to ship crude oil from the WCSB via the West Coast to China is comparable to the pipeline rate to reach the U.S. Gulf Coast. An increase in the transport costs to the Gulf Coast (utilizing alternative transport options such as rail) would have a tendency to increase the economic incentive to utilize any West Coast export options, if they are available.

 

Northwest Coast Energy News Special report links

What the Keystone Report says about Kitimat and Northern Gateway
What the Keystone Report says about the Kinder Morgan pipeline to Vancouver.
What the Keystone Report says about CN rail carrying crude and bitumen to Prince Rupert.
The State Department Environmental Impact Study of the railway to Prince Rupert scenario.

State Department news release

State Department Index to Supplemental Environmental Impact Study on the Keystone XL pipeline

 

PART THREE: Keystone EIS looks in-depth at the railway to Prince Rupert option for bitumen and crude

There have always been commentators who believe that if the Northern Gateway Pipeline is rejected by the Joint Review Panel or stopped by other means, that the bitumen from Alberta should be carried by rail to Prince Rupert.

A pipeline to Prince Rupert has already been rejected by Enbridge as impractical given the mountainous terrain and the narrow footprint along the Skeena River from Terrace to Prince Rupert.

That means taking bitumen by rail to Prince Rupert has not been seriously studied—until now.

The State Department Environmental Impact Study (EIS) on the controversial Keystone XL pipeline from Alberta to the US Gulf, does give serious consideration to the rail to Rupert option.

That’s because under its mandate the State Department had to consider alternatives to Keystone. The detailed look at carrying crude to the west coast is contained in the “No Action Alternatives” section of the Keystone report (that is telling President Barack Obama what might happen if he takes no action on Keystone)

The EIS took a brief look at the possibilities of rail to Kitmat, but concentrates mostly on Prince Rupert.

As for sending bitumen to the Gulf,via rail and tanker, the Keystone report concludes, as have most analysts that even if bitumen was shipped by rail to Prince Rupert, it would be cheaper to send it to markets in Asia than through the Panama Canal to the US Gulf Coast.

If pipelines to the Canadian West coast are not expanded or approved, even incurring the additional cost of rail transport to the West Coast ports (Vancouver, Kitimat, or Prince Rupert), estimated at $6 per barrel, results in a total transport cost to Asia that is still 40 percent cheaper than going via the Gulf Coast.

Absent a complete block on crude oil exports from the Canadian West Coast, there would belittle economic incentive to use the proposed project as a pass through. The high costs of onward transport to other potential destinations tend to mitigate against WCSB [Western Canada Sedimentary Basin] heavy/oil sands crudes being exported in volume from the Gulf Coast.

As an alternative to Keystone, the State Department examined a scenario where bitumen and possibly Bakken shale crude oil would be:

• Loaded onto rail in Lloydminster and transported to Prince Rupert, British Columbia;

• Transferred to a new/expanded marine terminal at Prince Rupert; and

• Shipped via Suezmax vessels to the Gulf Coast area (Houston/Port Arthur) through the Panama Canal.

If the tanker cars are hauling bitumen, they would be actually loading “railbit” which the report says is “similar to dilbit but with less diluent added” (Dilbit is the standard diluted bitumen in pipelines) There is also, according to the EIS, a possibility that the tank cars would carry raw bitumen without dilutent (although this requires insulated rail cars with steam coils)

New facilities in Prince Rupert would consist of a large rail terminal complex, most likely on themainland, where off-loaded crude oil would be stored until it could be loaded onto tankers, and an expanded port. The entire facility would cover 4,700 acres (1,900 hectares), including 3,500 acres (1,400 hectares) for storage and off-loading/on-loading facilities at the rail terminal and approximately 1,200 acres (487 hectares) of land at the expanded port.

The new tank terminal construction would consist of the following:

• Fourteen petroleum storage tanks (11 oil and three condensate);

• A security fence to encompass the tank terminal;

• A 180-foot-wide (55 metre) firebreak area around the outside perimeter of the terminal;

• Electrical supply and distribution (this terminal would be serviced by the Texada Island

Reactor substation); and

• Buildings (control center and civil infrastructure including roads).

Related Link Prince Rupert Port Authority Performance Report

 

The scenario calls for adding approximately 13 trains with 100 tanker cars per day on the 1,100 miles (1,770 kilometres) of CN and Canadian Pacific rail lines between Lloydminster and Prince Rupert.

(On the other hand, media mogul David Black who has proposed a refinery at Onion Flats half way between Kitimat and Terrace is considering a rail link to Kitimat if the Northern Gateway pipeline is stopped. Black estimates there would be six trains per day, 120 cars in each direction. While there is usually only one train a day to Kitimat or less, that idea would increase traffic along the Skeena and in his news release Black says 

If BC remains set against a pipeline the oil will come to the refinery by rail. CN and the oil companies are keen on this. A great deal of crude in North America is being moved by rail now. The costs are not that different in this case and no permits are required. Rail tankering is, however, not as safe and it is more disruptive. Small towns along the route with level crossings would rue having 12 more trains running through every day.

The State Department scenario says that if the Prince Rupert option actually happened there would be “one to two additional Suezmax tanker vessels per day (430 tankers per year) would travel between Prince Rupert and the Gulf Coast area refinery ports via the Panama Canal.”

The concept of the Suezmax tankers is critical to the west coast, even if none of the scenarios eventually happen, because the State Department report notes that the Panama Canal is now being expanded, so that larger ships, including tankers, can go through the canal after 2014.

The current size is Panamax (maximum size for the current Panama Canal) to Suezmax (the maximum size for the Suez Canal), and, according to the State Department that means even if the even bigger Very Large Crude Carriers are not calling at west coast ports, the newer, larger Suezmax tankers may  be.

It should be noted, however, that if WCSB crude oil reaches a Pacific port, regardless of whether by rail or by pipeline, the economics for movement via tanker would favor shipping the oil to Asia rather than the Gulf Coast area. The cost of transporting crude oil via tanker from Prince Rupert to Houston and Port Arthur is estimated to be approximately $4.70/bbl, whereas the transport cost via tanker from Prince Rupert to refinery ports in Asia (e.g., Ulsan, South Korea and Dalian, China), is estimated to be only approximately $1.70 and $2.00/bbl, respectively. The lower transport cost to Asia versus the Gulf Coast area is attributable to shorter trip duration (30 to 37 days to Asia versus about 45 days to the Gulf Coast area), avoiding the Panama Canal toll(about $0.70/bbl), and being able to use a larger tanker because it would not be constrained by the Panama Canal (a VLCC tanker to China would have a capacity of almost 2 million bbl versus a Suezmax tanker to the Gulf Coast area with a capacity of about 884,000 bbl).

So what would happen if there was a scheme to truck bitumen and crude to Prince Rupert and ship via the Panama Canal to the Gulf?

The State Department EIS says:

 the transport of the crude oil via tankers from Prince Rupert to the Gulf Coast area refineries would not have any effects on geology, soils, groundwater, wetlands, vegetation, land use, socioeconomics, noise, or cultural resources, other than in the event of a spill.

It goes on to note:

The Gulf Coast area refineries already receive crude oil shipments via tankers from Mexico, Venezuela, and other locations; the Rail/Tanker Scenario is expected to simply displace these sources of crude oil with WCSB crude oil. Therefore, no new construction or new operational impacts are expected to occur as a result of this scenario at the Gulf Coast area refineries or surrounding habitats or communities.

In its study of a possible expanded Prince Rupert terminal that would welcome tankers, the State Department says:

The proposed Northern Gateway terminal at Kitimat, British Columbia was used as a surrogateto estimate the marine facilities needed at Prince Rupert. The Northern Gateway facility isdesigned to handle about 525,000 bpd of crude delivered by pipeline for loading on vessels to theWest Coast and Asia. In addition, it is designed to receive about 193,000 bpd of diluent (a verylight oil obtained from natural gas production) from cargoes arriving by water and discharging into storage at the terminal and moving back to Alberta via a parallel pipeline. The total volumeof about 718,000 bpd approximates the volume of WCSB heavy crude oil that would be loaded at Prince Rupert.

 

 

More Details:
Northwest Coast Energy News Special report links

What the Keystone Report says about Kitimat and Northern Gateway
What the Keystone Report says about the Kinder Morgan pipeline to Vancouver.
What the Keystone Report says about CN rail carrying crude and bitumen to Prince Rupert.
The State Department Environmental Impact Study of the railway to Prince Rupert scenario.

State Department news release

State Department Index to Supplemental Environmental Impact Study on the Keystone XL pipeline

 

PART FOUR: State Department assessment of the railway to Rupert route for bitumen

Here are edited portions of the EIS assessment for a major oil terminal at Prince Rupert

Environmental Setting

The EIS says “the local surface geology at the Prince Rupert site consists of bedrock (granitic rocks) overlain by glacial outwash and a thin soil cover.” and goes on to note that “Prince Rupert is located along the coastal region of Canada, which is seismically active.”

Potential Impacts

At Prince Rupert, depth to bedrock is expected to be relatively shallow, so rock ripping and some blasting could be necessary. The impacts of rock ripping and blasting are limited to the immediate area and would not result in any significant impacts to the underlying or nearby geology. Excavation activities, erosion of fossil beds exposed due to grading, and unauthorized collection can damage or destroy paleontological resources during construction.

(The report notes that The potential for finding paleontological resources in the areas that would be disturbed is unknown. But the area of the coast has been heavily metamorphisized and most fossils, so far, have been found further inland, largely along the Copper River near Terrace)

In terms of geologic hazards, the Prince Rupert terminals would be located along the coastal region of Canada, which is seismically active. In addition, the presence of steep slopes increases the risk of landslides and the port’s coastal location increases the risk of flooding…. The Prince Rupert rail terminals and port facilities would be designed to withstand potential seismic hazards and flooding…

Construction of the proposed terminals and port expansion in Prince Rupert would result in the disturbance of approximately 3,500 acres (1,400 hectares) of land for the construction of the rail terminal complex and approximately 1,200 acres (487 hectares) for the expansion of the port. Potential impacts to the soils resources of the area could result from vegetation clearance, landscape grading, and recontouring to ensure proper drainage, the installation of storm water drainage systems, construction of the required infrastructure, and other construction activities.
One of the primary concerns during construction activities is soil erosion and sedimentation.
Potential impacts to soils from erosion are expected to occur in areas where the slopes are greater than 20 per cent and where the erosion potential due to their nature is high. Based on available landscape and soils information, the soils found in the area are not highly erodible and the required infrastructure would be located in areas that are relatively flat. Therefore, the impact of the proposed terminal complex and port construction activities on soil erosion would be minor.

 

Groundwater
Environmental Setting

The Prince Rupert Terminals and port expansion would occur in British Columbia on Kaien Island, which receives about 102 inches of rainfall per year. The terminals would be located on an inlet that is part of the eastern Pacific Ocean on the Venn Passage near the much larger Inland Passage, which extends from Washington State to Alaska along the islands and mainland of British Columbia, Canada. Venn and Inland Passages are marine (salt water) waterbodies. The islands consist of bedrock (granitic rocks) overlain by glacial outwash and a thin soil cover.
Groundwater is shallow, poor quality, and unused. Drinking water is derived from lakes on the mainland. Water quality in the terminal complex area is seawater and inland brackish.

Potential Impacts

During construction of the facilities at Prince Rupert, the primary potential impacts to groundwater would be spills or leaks from construction equipment. Mitigation for these impacts includes having in place appropriate plans in place and appropriate cleanup materials available.
During operations of the facilities at Prince Rupert, the primary potential impacts to groundwater would again most likely be spills or leaks from operation equipment or associated with crude oil unloading of railcars. Although the initial impacts of potential releases or spills may be contained or limited to soil, potential impacts to groundwater may occur depending on the depth to groundwater, soil characteristics (e.g., porosity, permeability), spill volume and extent, and whether the spill reaches surface water bodies, some of which are interconnected to groundwater.

Surface Water
Environmental Setting

The upland character surrounding the potential Prince Rupert terminal area is dominated by bog forest uplands and the flowing surface water bodies are predominantly precipitation- and shallow groundwater-fed intermittent streams. Some open waterbodies are present in the southeast portion of Kaien Island. Tidal shore zones are of a rugged and rocky nature and receive wave energy generated by naturally occurring fetch and large wakes from marine traffic. Winter winds are strong and from the southeast to southwest, with surface currents predominantly northward from the Hecate Strait. Lighter summer winds have less influence on currents and allow freshwater runoff from land and deep water tidal effects to exert more control and provide variation in summer current patterns. Significant wind and tidal mixing tend to occur where waters are shallow and around islands and rocky points of land. The coastal landscape is predominantly fjords carved into the granitic Coast Mountains, created by the last of several glacial periods approximately 12,000 years ago. Shores tend to be rocky and steep with beaches restricted to sheltered areas adjacent to estuaries and the navigable straits and channels provide a wide variety of exposures and habitats.

Potential Impacts

Construction of the facilities at Prince Rupert would disturb approximately 4,700 acres. The primary potential impacts to surface waters include erosion and sedimentation and spills/leaks of hazardous materials. Mitigation for these impacts includes having in place appropriate SPCC plans in place and appropriate cleanup materials available.
During operations, the primary potential impacts to surface waters include storm water runoff, spills, or leaks from operation equipment or associated with crude oil unloading of railcars.
Provision of storm water management measures would mitigate the impacts of stormwater runoff.

Terrestrial Vegetation
Environmental Setting

The Prince Rupert terminals and port facilities would be located in the Coastal Gap Level III Ecoregion. The vegetation immediately adjacent to the Pacific Ocean includes stunted, opengrowing western red cedar, yellow cedar, and western hemlock with some stunted shore pine and Sitka spruce . There are also open areas present within the affected areas. It is unclear if biologically unique landscapes or vegetation communities of concern exist within the proposed Prince Rupert terminal complex boundary.

Potential Impacts

The proposed rail terminal complex and port facilities at Prince Rupert would require the clearing of up to 4,700 acres of natural vegetation, most of which is forested based on aerial photo interpretation. There does not appear to be any biologically unique landscapes or communities of conservation concern within the terminal complex boundary. Nearly all of these impacts would be permanent as natural habitats are converted for use as rail terminals and port facilities.

Wildlife
Environmental Setting

Many wildlife species use this coastal area for hunting, foraging, roosting, breeding, and nesting (Tourism Prince Rupert 2012). Wildlife characteristic of this ecoregion include grizzly bear (Ursus arctos horribilis), black bear (Ursus americanus), mountain goat (Oreamnos americanus), black-tailed deer (Odocoileus hemionus
columbianus), wolf (Canis lupus), moose (Alces alces), mink (Mustela sp.), bald eagle
(Haliaeetus leucocephalus), seabirds, shorebirds, waterfowl, and grouse (Tetraoninae)
The Prince Rupert terminal complex would be located in the Northern Pacific Rainforest(Region 5) bird conservation region, which is an ecologically distinct region in North America…

The coast of the Northern Pacific Rainforest is characterized by river deltas
and pockets of estuarine and freshwater wetlands set within steep, rocky shorelines. These wetlands provide critical nesting, wintering, and migration habitat for internationally significant populations of waterfowl and other wetland-dependent species. The area includes major stopover sites for migrating shorebirds, especially western sandpipers (Calidris mauri) and dunlins (Calidris alpina). Black oystercatchers (Haematopus bachmani), rock sandpipers (Calidris
ptilocnemis), black turnstones (Arenaria melanocephala), and surfbirds (Aphriza virgata) are common wintering species. Nearshore marine areas support many nesting and wintering sea ducks. Many seabirds breed on offshore islands, including important populations of ancient murrelet (Synthliboramphus antiquus), rhinoceros auklet (Cerorhinca monocerata), tufted puffin (Fratercula cirrhata), common murre (Uria aalge), western gull (Larus occidentalis), glaucouswinged gull (Larus glaucescens), and Leach’s storm-petrel (Oceanodroma leucorhoa). Pelagic
waters provide habitat for large numbers of shearwaters (Calonectris spp. and Puffinus spp.), storm-petrels (Hydrobatidae), and black-footed albatross (Phoebastria nigripes)

Potential Impacts

Direct impacts could occur due to vegetation removal or conversion, obstructions to movement patterns, or the removal of native habitats that may be used for foraging, nesting, roosting, or other wildlife uses (Barber et al. 2010). Indirect impacts to wildlife are difficult to quantify and are dependent on the sensitivity of the species, individual, type and timing of activity, physical parameters (e.g., cover, climate, and topography), and seasonal use patterns of the species (Berger 2004). Most of these impacts would be essentially permanent.

Fisheries
Environmental Setting

Prince Rupert is an important deepwater port and transportation hub of the northern coast of British Columbia. It is located on the northwest shore of Kaien Island, which is connected to the mainland by a short bridge. The town of Prince Rupert is just north of the mouth of the Skeena River, a major salmon-producing river. Key commercial fisheries include Pacific salmon, halibut, herring, and groundfish, which are processed from Prince Rupert.

Prince Rupert area supports a high density of streams and rivers that host an array of valuable recreational fisheries for salmon, steelhead (anadromous rainbow trout), rainbow trout, lake trout, cutthroat trout, char, Arctic grayling, and northern pike .

Potential Impacts

New impacts to commercial and recreational fisheries’ habitats from the construction and operation of the facilities in Prince Rupert could include marine intertidal zones as well as fish spawning zones (e.g., herring), if present. There would likely be short-term impacts to the benthic (bottom dwelling) community during construction of the berths and mooring facilities. Bottom-dwelling
fish (i.e., halibut, flounder, and rockfish) and marine invertebrates (i.e., clams, mussels, crabs, and other bivalves and crustaceans) could potentially be impacted during construction as well, but these affects are expected to be minor and temporary or short-term in duration.

Additional shipping traffic would increase underwater sound because large vessels, including tankers, put out relatively high noise levels. Fish and other aquatic organisms (including invertebrates and marine mammals) use sound as a means of communication and detection within the marine acoustic environment. Increased shipping traffic could mask natural sounds by increasing the ambient noise environment from Prince Rupert Harbor and along the marine route to the Gulf Coast area. Long-lasting sounds, such as those caused by continuous ship operation, can cause a general increase in background noise and there is a risk that such sounds, while not causing immediate injury, could mask biologically important sounds, cause hearing loss in affected organisms, and/or have an impact on stress levels and on the immune systems of aquatic species.

Exotic and invasive species are sometimes transferred in the ballast water of tanker ships.
Monitoring and controls would need to be implemented to treat ballast water discharged into Prince Rupert Harbor such that invasive or exotic species would not be released into the marine environment.

Threatened and Endangered Species

This section focuses on animal and plant species present in the Prince Rupert area that are Canada SARA protected. As a coastal area along the Pacific Migratory Bird Route, and an area that receives a lot of precipitation and is heavily forested, many wildlife species inhabit the area, as discussed in Section 5.1.3.6, Wildlife. According to the British Columbia (B.C.) Conservation Data Centre (2012), only one SARA threatened/endangered species is known to occur in Prince Rupert—the green sturgeon (Acipenser medirostris), a Pacific Ocean inhabitant. In addition, several SARA special concern species occur in Prince Rupert, including western toad (Anaxyrus boreas), coastal tailed frog (Ascaphus truei), North American racer (Coluber constrictor), grey whale (Eschrichtius robustus), and Stellar sea lion (Eumetopias jubatus)

Potential Impacts

The green sturgeon is typically found along nearshore marine waters, but is also commonly observed in bays and estuaries. The expansion of the proposed port facility could have minor adverse effects on the green sturgeon, but the sturgeon could readily avoid the port area.
Increased shipping traffic at Prince Rupert and as the vessels transit to the Gulf Coast area refineries may affect the feeding success of marine mammals (including threatened and endangered species) through disturbance, because the noise generated by tankers could reduce the effectiveness of echolocation used by marine mammals to forage for food. Whales use underwater vocalizations to communicate between individuals while hunting and while engaged in other behaviors. Increased underwater noise from additional shipping traffic could disrupt these vocalizations and alter the behavior of pods of whales. Moreover, additional boat and
tanker traffic could also increase the potential for collisions between marine mammals and shipping vessels. These effects would be additive in nature and could potentially add to existing disturbance effects and collision risks caused by the current level of shipping traffic, commercial and recreational fishing, and cruise ship passage.

Land Use, Recreation, and Visual Resources
Environmental Setting

Land use, recreation, and visual resources for the Prince Rupert area where the new terminals and expanded port facilities would be built differ sharply from the other terminal sites. Prince Rupert is located on an inlet of the Pacific Ocean in a heavily forested area of British Columbia.
Urban land use is generally limited to the communities in and around the city of Prince Rupert, with some small outlying communities and villages in the area. Given Prince Rupert’s role as a terminus of the Alaska Ferry System, many people see the port and surrounding areas in a recreational context. The area is largely undeveloped and would be sensitive to changes in the visual landscape.

Potential Impacts

If constructed on previously undeveloped land, the new facilities would primarily impact mixed forest… The construction and operational impacts on land use, recreation, and visual resources at the Lloydminster, Epping, and Stroud terminal complex sites and along the Cushing pipeline route would be the same as for the Rail/Pipeline Scenario.

Socioeconomics
Environmental Setting

Population/Housing

Construction and operations activities are not expected to have a significant effect on population and housing for this scenario. Because construction and operations job estimates have not yet been determined for this scenario, worker requirements for Prince Rupert, Lloydminster, and Epping are assumed to be minor..additional temporary housing could be needed in Prince Rupert… Prince Rupert only has about 740 hotel/motel rooms

Local Economic Activity

Tanker infrastructure and operations would be affected as ships transport crude oil from Prince Rupert through the Panama Canal to Texas ports near Houston.

Direct construction expenditures for facilities at Prince Rupert would be approximately $700 million, with approximately 1,400 annual construction jobs, based on the cost estimates of the proposed Enbridge Northern Gateway marine terminal in Kitimat

Despite the large population of First Nations people in the Prince Rupert area, Canada does not have a similar definition to minorities as the Keystone report applied under US law and so it notes “Impacts to minority and low-income populations during construction and would be similar to those described for the proposed [Keystone] Project and could possibly result in increased competition for medical or health services in underserved populations. Canada does not define HPSA and MUA/P, so it is unknown whether or not the minority populations in Prince Rupert or Lloydminster exist in a medically underserved area.

Tax Revenues and Property Values

It says construction of a new terminal Prince Rupert would generate provincial sales taxes, goods and services taxes, and hotel taxes. Construction of the tank and marine terminals at Prince Rupert…would involve large numbers of road trips by heavy trucks to transport construction materials and equipment to and from the sites. Construction in Prince Rupert could also potentially involve vessel deliveries of material. This traffic could cause congestion on major roadways, and would likely require temporary traffic management solutions such as police escorts for oversize vehicles.

Cultural Resources

Despite the rich heritage of First Nations in the Prince Rupert area, the Keystone alternative study reported;

No cultural resources studies have been conducted for the Prince Rupert area. Review of aerial photographs shows that a small portion of the area that could potentially be developed has already been disturbed by development, including port facilities, structures, and roads. This preliminary review shows that most of the area appears undeveloped and would have the potential for intact buried cultural resources.

The report notes that “Any ground disturbance, especially of previously undisturbed ground, could potentially directly impact cultural resources.”

It goes on to note that the potential to

include intact buried cultural resources would require evaluation through research and cultural resources surveys. If cultural resources were identified, follow-up studies could be required. In general terms, the archaeological potential of heavily disturbed areas, such as might be found in active rail yards or within developed transportation corridors, is normally lower than in undisturbed areas.

Archaeological potential is also contingent upon factors such as access to water, soil type, and topography, and would have to be evaluated for each area to be disturbed. Aboveground facilities have the potential to indirectly impact cultural resources from which they may be visible or audible. The potential for increased rail traffic to contribute to indirect impacts would require consideration.

Air and Noise

The report also summarizes the possible green house gas emissions for the rail and tanker project as whole from Prince Rupert to the Gulf Coast refineres and notes that overall

On an aggregate basis, criteria pollutant emissions, direct and indirect GHG emissions, and noise levels during the operation phase for this scenario would be significantly higher than that of the proposed [Keystone XL] Project mainly due to the increased regular operation of railcars, tankers, and new rail and marine terminals.

Air Quality

The rail cars and tankers transporting the crudes would consume large amounts of diesel fuel and fuel oil each day….The criteria pollutant emissions would
vary by transportation segment, particularly during marine-based transit. Oil tankers traveling from the Prince Rupert marine terminal through the Panama Canal to Houston/Port Arthur pass through several different operational zones, including reduced speed zones leading into and out of the ports, North American Emission Control Areas where the use of low-sulfur marine fuel is mandated, and offshore areas where the tankers travel at cruise speeds.

During the return trip, tankers are filled with seawater (ballast) to achieve buoyancy necessary for proper operation, which affects the transit speeds of the vessel. Furthermore, the tankers spend several days loading or unloading cargo at each marine terminal with auxiliary engines running (an activity called hoteling). The tanker emissions accounted for return trips (i.e., both loaded cargo going south and unloaded cargo going north).

In aggregate, the total operational emissions (tons) estimated over the life of the project (50 years) are several times greater than those associated with the combined construction and operation of the proposed Keyston XL Project

Greenhouse Gases

Direct emissions of GHGs would occur during the construction and operation of the Rail/Tanker Scenario. GHGs would be emitted during the construction phase from several sources or activities, such as clearing and open burning of vegetation during site preparation, operation of on-road vehicles transporting construction materials, and operation of construction equipment for the new pipeline, rail segments, multiple rail and marine terminals, and fuel storage tanks.

Due to limited activity data, GHG emissions from construction of the Rail/Tanker Scenario were not quantified; however, these emissions would occur over a short-term and temporary period, so construction GHG impacts are expected to be comparable to the proposed [Keystone XL] Project.
During operation of the railcars and tankers that comprise this scenario, GHGs would be emitted directly from the combustion of diesel fuel in railcars traveling over 4,800 miles (7,725 km) and fuel oil in marine tankers traveling over 13,600 miles (21,887 km) round-trip.

The Rail/Tanker Scenario would also result in indirect emissions of GHGs due to the operation of 16 new rail terminals, an expanded port, and potential pumping stations. The new rail terminal in Prince Rupert would be projected to require 5 MW of electric power to operate, possibly bring indirect GHG emissions

Noise

Noise would be generated during the construction and operation of the Rail/Tanker Scenario. Noise would be generated during the construction phase from the use of heavy construction equipment and vehicles for the new pipeline, rail segments, and multiple rail and marine terminals, and fuel storage tanks. Due to limited activity/design data, noise levels from the construction of this scenario were not quantified; however, this noise would occur over a short term and temporary period, so construction noise impacts are expected to be comparable to those
of the proposed Project. During operation of the railcars and tanker ships that comprise this scenario, noise would be generated from the locomotives, movement of freight cars and wheels making contact with the rails as the train passes, train horns, warning bells (crossing signals) at street crossings, and tanker engines during hoteling and maneuverings at the new rail and marine terminals in Prince Rupert.

(Noise from ocean going vessels which is a concern for coastal First Nations and environmental groups is covered later on impact on wildlife)

 

Climate Change Effects on the Scenario
Environmental Setting

The Keystone study looks at the affects of climate change, but concentrates largely on the Gulf Coast beause the most of the Rail/Tanker Scenario was outside of the boundaries of the study, but it does note that the sea levels are projected to rise due to glacial melting and thermal expansion of the water. The rate, total increase, and likelihood of the rise is in part dependent on how rapid the ice sheets warm and is a source of ongoing scientific uncertainty.

The United States Global Change Research Program (USGCRP) estimates that sea level rise could be between 3 to 4 feet by the end of the century.

Increasing sea level projected due to climate changes as described above shifts the impact of mean high tide, storm surge, and saltwater intrusion to occur further inland and this would negatively affect reliable operation of the port infrastrucure for tanker traffic. Mitigation of these climate effects could be addressed by making engineering and operational changes at the port.

Potential Risk and Safety
Environmental Setting

The Rail/Tanker Option would combine the risk inherent in both pipeline and oil tanker
transport. However, the risks and consequences for using oil tankers to transport the hazardous materials are potentially greater than the proposed Project. Overall, crude oil transportation via oil tankers has historically had a higher safety incident rate than pipelines for fire/explosion, injuries, and deaths.

Spills have been reported while the vessel is loading, unloading, bunkering, or engaged in other operations

The main causes of oil tanker spills are the following:
• Collisions: impact of the vessel with objects at sea, including other vessels (allision);
• Equipment failure: vessel system component fault or malfunction that originated the release of crude oil;
• Fires and explosions: combustion of the flammable cargo transported onboard;
• Groundings: running ashore of the vessel; and
• Hull failures: loss of mechanical integrity of the external shell of the vessel.

From 1970 to 2011, historical data shows that collisions and groundings were the maincauses of oil tanker spills worldwide.

Potential Impacts

Loading and unloading of the railcars at tank farms near seaports could allow spills to migrate and impact seawaters and shorelines.

However, the loading and unloading are generally carried out under supervision and would be addressed promptly by the operators, limiting the potential migration and impacts of the spill to the immediate area.

Once the tanker is loaded and at sea, the propagation and impacts of a spill could become significant. Oil tankers may carry up to 2,000,000 bbl of oil

A release of oil at sea would be influenced by wind, waves, and current. Depending on the volume of the release, the spreading of oil on the surface could impact many square miles of ocean and oil birds, fish, whales, and other mammals and could eventually impact shorelines. Oil would also mix with particulates in sea water and degrade. As this occurs some oil will begin to sink and either be retained in the water column (pelagic) or settle to the ocean floor (sessile).

Pelagic oil could be consumed by fish or oil fauna passing though the submerged oil. Sessile oil could mix with bottom sediment and potentially consumed by bottom feeding fauna. Spills in ports-of-call could affect receptors similar to an open ocean release but also could temporarily affect vessel traffic and close ports for cleanup activities.

The identification of key receptors along the rail route alternative was not available for this evaluation. Therefore a comparison to the proposed project was not completed.

Surface Water

The Lloydminster to Prince Rupert portion of this route would begin in the western plains at the Saskatchewan/British Columbia border and travel west through an area of high-relief mountains with large valleys, referred to as the Cordillera region. From a water resource perspective, the plains region of Canada is characterized by relatively large rivers with low gradients. The plains rivers drain the Rocky Mountains to the Arctic Ocean. The Cordillera region is largely composed of northwest-southwest trending mountain ranges that intercept large volumes of Pacific
moisture traveling from the west towards the east. River systems in this region are supplied by a combination of seasonal rainfall, permanent snowfields, and glaciers.

The following are larger rivers crossed by the existing rail lines between Lloydminster and Prince Rupert:

• North Saskatchewan River, Alberta
• Pembina River, Alberta
• McLeod River, Alberta
• Fraser River, British Columbia
• Nechako River, British Columbia
• Skeena River, British Columbia

Wetlands

Spills within wetlands would most likely be localized, unless they were to occur in open, flowing water conditions such as a river or in the ocean. A crude oil spill in a wetland could affect vegetation, soils, and hydrology. The magnitude of impact would depend on numerous factors including but not limited to the volume of spill, location of spill, wetland type (i.e., tidal versus wet meadow wetland), time of year, and spill response effectiveness. The construction of additional passing lanes to accommodate increased train traffic resulting from this scenario could
result in permanent impacts to wetlands if passing lanes were constructed where wetlands occur.
However, as there is some leeway regarding the exact location of the passing lanes, it is expected that wetlands would be avoided by design.

Fisheries

The Rail/Tanker Scenario railroad route would cross numerous major streams and rivers in Canada, many of which support anadromous fish species such as salmon.

Anadromous species are those that spawn and rear in freshwater but migrate to the ocean at a certain size and age. Pacific salmon are large anadromous fish that support valuable commercial and recreational fisheries. Commercial fisheries for salmon occur in marine water and most recreational fishing for salmon occurs in freshwater. Salmon eggs are vulnerable to the effects of fine sediment deposition because female salmon deposit their eggs in stream bed gravels.

Despite this vulnerability, the overland railway route is not expected to present any new impacts to salmon unless there is a spill into its habitat, although the risk of spills does increase under this scenario due to the increase in the number of trains that would use the route.

Potential new impacts under the Rail/Tanker Scenario on commercially or recreationally significant fisheries along the route would be minor because the railroads that would be used are already built and in operation. However, the risk of an oil spill or release of oil or other materials still exists. The tanker portion of this route scenario is also subject to oil spill risk.

Threatened and Endangered Species

The rail route would cross over the Rocky Mountain region of western Alberta, which is inhabited by species such as the woodland caribou (Rangifer tarandus) (a SARA threatened species) and grizzly bear (a SARA special concern species). This region of British Columbia is home to a number of SARA threatened/endangered species, including the peregrine falcon (Falco peregrinus anatum) (SARA threatened), salish sucker (Catostomus sp.) (SARA endangered), white sturgeon (Acipenser transmontanus) (SARA endangered), caribou (southern mountain population) (SARA threatened), northern goshawk (Accipiter gentilis laingi) (SARA threatened), and Haller’s apple moss (Bartramia halleriana) (SARA threatened).

A number of additional SARA special concern species inhabit the regions of Canada that would be traversed by the Rail/Tanker Scenario, including but not limited to those special concern species expected to occur in the Prince Rupert region, and discussed above (B.C. Conservation Centre 2012).

Northwest Coast Energy News Special report links

What the Keystone Report says about Kitimat and Northern Gateway
What the Keystone Report says about the Kinder Morgan pipeline to Vancouver.
What the Keystone Report says about CN rail carrying crude and bitumen to Prince Rupert.
The State Department Environmental Impact Study of the railway to Prince Rupert scenario.

State Department news release

State Department Index to Supplemental Environmental Impact Study on the Keystone XL pipeline