DFO snubs District of Kitimat Council for a second time

 

Fishing and camping on the Kitimat River
Camping and fishing on the Kitimat River. (Robin Rowland/Northwest Coast Energy News)

Fisheries and Oceans has once again snubbed District of Kitimat Council, by refusing to appear in public before council to answer questions about key issues.

At the Monday, March 10 council meeting, the snub was on the issue of who is responsible for the Kitimat River, facing “increased usage of the riverbank during future construction periods” as well as concerns raised by council earlier over waste left by campers.

In the fall, DFO also refused to appear before council when the department was asked to do so on the issue of Clio Bay remediation.

A report to Council from the District’s Deputy Administrative Officer, Warren Waycheshen, noted that district administration “was recently advised that Fisheries and Oceans are unable to participate in Council meetings, however, they will continue to meet at an operational level to provide information on DFO’s regulatory role.

Waycheshen’s report noted” “District Staff will continue to correspond with Fisheries and Oceans on riverbank camping, and when another operational meeting can be coordinated, Council will be advised of the date and time.”

In other words, DFO officials will continue to meet with district staff and council, in private, but are not accountable to the Kitimat public for their actions, except through what district staff may report to council.

The rest of the report consisted of quotes form the amended Fisheries Act and what appears to be a printout of a DFO Power Point presentation on how it sees its current role.

So now that the federal government appears to have downloaded responsibility to the District, the riverbank ball is now in the hands of Kitimat Council, whether or not the Council actually has jurisdiction.

Councillor Phil Germuth presented a motion asking that District staff prepare a map showing who exactly owns the land along the Kitimat River and what that land is being used for.

In the debate, Councillor Corrine Scott noted, “The first paragraph says Fisheries and Oceans won’t attend a council meeting. Fine, we’ve got that part. But then that’s it. Everything else is about the fisheries protection program and policy statements and all the rest of it. But it doesn’t actually answer the question about any concerns regarding waste left by campers and whether its okay or whether we should be putting in more garbage cans or that sort of thing.

“That’s what I was looking for from a report. What should the setbacks be? Should there be any setbacks. Should there be any camping? Do we have to have a certain number of receptacles for garbage? I just don’t know. I was expecting more than what we got out of this report.”

Councillors Mary Murphy and Mario Feldhoff noted that the District has done reports on how the riverbank is used.

District Planner Daniel Martin told Council that DFO has said the department has “no real concerns’ about people camping on the river “unless they begin to destroy fish habitat.” DFO told Kitimat staff. “If the District has concern about access to the river, then control access to the river.”

“I know that we have a report, it was a very, very good report,” Scott then said. “That’s not what we’re talking about. I was waiting to hear what Fisheries and Oceans has to say, I know what we’ve got and what we’re doing and what is being monitored. I thought motion was to find out from Fisheries and Oceans if there was some kind of other issues we should know about.” Scott noted that if Martin’s statement had been included in the report, she would have been satisfied. “I was waiting to hear what the Department of Fisheries and Oceans had to say.”

Germuth then pointed out that he wanted to know who the landowners are so if Council descies to  control access to the river because, “If we put a gate up on the river, we’re not just controlling access for campers, we’re controlling access for everyone else that wants to go through. I want to know who owns the land, so if we decide to do something, we can chat with landowners.

“We’re not going to get anywhere with DFO,” Feldhoff said. “They’ve been here in the past, and , as I recall, they said they don’t think there is a problem. We may think there’s a problem but they don’t think it’s high enough in terms of priorities. So we might want to reacquaint ourselves with what was going on. There are enough reports to choke a horse, going back at least ten years.”

“Longer that that, I do believe,” Mayor Joanne Monaghan interjected.

Councillor Edwin Empinado agreed with Scott saying, “The response from DFO didn’t really answer the motion [the original question from Council]. Fisheries just gives us the Fisheries Act, their policies, regulations, guidelines, program changes. It doesn’t talk about riverbanks.”

Germuth’s motion was carried unanimously.

 

Two JRP conditions are already outdated, Cullen says

Skeena Bulkley Valley MP Nathan Cullen says at least two of the Northern Gateway Joint Review Panel’s 209 conditions may already be outdated.

In a news release January 15, 2013, Cullen said, “The requirement of $950 million in spill insurance was recently called into question as reports surfaced of cleanup costs at the sites of Enbridge’s 2010 Michigan spill surpassing $1.035 billion.”

The $1.035 billion figure was contained in Enbridge’s American arm, Enbridge Energy Partners, latest filing for the third quarter over 2013 with the US Securities and Exchange Commission.
Cullen went to say that, “The JRP’s order for Enbridge to carry out new research on the behaviour of diluted in bitumen in a marine environment has been questioned following the publication of an Environment Canada study confirming that diluted bitumen will sink in saltwater in high waves and where sediment is present.”

Cullen is referring to a study by Environment Canada Emergencies Science and Technology,Fisheries and Oceans Canada Centre for Offshore Oil, Gas and Energy Research and Natural Resoures Canada on bitumen that was completed in November and released this week.

The study found

. Like conventional crude oil, both diluted bitumen products floated on saltwater (free of sediment), even after evaporation and exposure to light and mixing with water;
. When fine sediments were suspended in the saltwater, high-energy wave action mixed the sediments with the diluted bitumen, causing the mixture to sink or be dispersed as floating tarballs;
(The use of the term “tarball” in this report follows convention in the literature and refers to the consistency of floating, heavily-weathered oil. It does not describe the chemical composition of the product.)
. Under conditions simulating breaking waves, where chemical dispersants have proven effective with conventional crude oils, a commercial chemical dispersant (Corexit 9500) had quite limited effectiveness in dispersing dilbit;
. Application of fine sediments to floating diluted bitumen was not effective in helping to disperse the products;
. The two diluted bitumen products display some of the same behaviours as conventional petroleum products (i.e. fuel oils and conventional crude oils), but also significant differences, notably for the rate and extent of evaporation.

Read the report:Properties, Composition and Marine Spill Behaviour, Fate and Transport of Two Diluted Bitumen Products from the Canadian Oil Sands (pdf)
The Joint Review Panel found that dilbit was “ no more likely to sink to the bottom than other
heavier oils”

The Panel acknowledges the variety of opinions from experts regarding the behavior and fate of oil spilled in aquatic environments. These experts generally agreed that the ultimate behavior and fate of the oil would depend on a number of factors, including the volume of oil spilled, the physical and chemical characteristics of the product, and the environmental conditions at the time.

The Panel finds that likely oil behaviour and potential response options can be predicted from knowledge of the type of oil spilled and its physical and chemical characteristics. Details of oil behaviour and response options cannot be specified until the actual circumstances of a spill are known.

The Panel is of the view that, if placed along a spectrum of: tendency to submerge; persistence; and recovery difficulty, dilbit would be on the higher end of the spectrum, similar to other heavy oil products.

The Panel accepts evidence from previous spills showing that, in response to circumstances at the time, the behaviour of heavier oils, including conventional oils and synthetic crudes, can be dynamic. Some oil floats, some sinks, and some is neutrally buoyant and subject to submergence and overwashing.

Although the project would transport different types of oil, the majority of the evidence presented during the hearing process focussed on whether dilbit is likely to sink when spilled in an aquatic environment. In light of this, the Panel has chosen to focus its views on dilbit. The Panel heard that the fate and behaviour of dilbit has not been studied as much as that of other oils.

Although there is some uncertainty regarding the behavior of dilbit spilled in water, the Panel finds that the weight of evidence indicates that dilbit is no more likely to sink to the bottom than other heavier oils with similar physical and chemical properties.

The Panel finds that dilbit is unlikely to sink due to natural weathering processes alone, within the time frame in which initial, on-water response may occur, or in the absence of sediment or other particulate matter interactions. The Panel finds that a dilbit spill is not likely to sink as a continuous layer that coats the seabed or riverbed.

“It hasn’t even been a month since the JRP released their 209 conditions, and it seems like we’re already seeing some of them become obsolete,” Cullen said.

“Throughout the review process, the JRP continually ignored the situation in Michigan as it unfolded before our eyes. They saw the spill caused by Enbridge’s negligence, which was worsened by Enbridge’s incompetence, and how it brought untold damage to the local ecosystem and cost over $1 billion US. But the 209 conditions didn’t reflect what we learned about Enbridge’s history or its culture, or what we’ve learned about diluted bitumen at all.”

The Joint Review process was set up to deliver a positive verdict, according to Cullen, regardless of what the real life case studies in Michigan had already shown. “To say that it won’t cost as much – if not more – to respond to a spill in a remote corner of northwestern BC during winter than it was in Michigan in the middle of July is ridiculous,” Cullen said.

“What’s even more astonishing is that we asked repeatedly for these studies on the behaviour of diluted bitumen in the marine environment to be part of the Joint Review Panel’s assessment. That the government waited until after the JRP had given its conditional yes to release these findings is not only appalling but also highly suspect.

Cullen says there are two key questions that the Harper government now must answer. “What kind of protection is the government providing when it lowballs on the insurance for oil spills? And what kind of oversight is it giving Canadians when the verdict is given before the evidence is released?”

 

Enbridge’s Michigan cleanup costs now exceed JRP pipeline conditions for Gateway, SEC filing shows

NTSB staff examine ruptured pipe
US National Transportation Safety Board staff examine a ruptured pipe from the Enbridge oil spill in August, 2010. The photo was released by the NTSB May 21, 2012. (NTSB)

The costs for Enbridge to clean up the 2010 Marshall, Michigan oil spill now far exceeds the maximum estimate that the Joint Review Panel gave for a major spill on the Northern Gateway Pipeline and also exceeds the amount of money the JRP ordered Enbridge to set aside to deal with a spill. Enbridge’s cleanup costs have also now edged past the higher liability amount requested by the Haisla Nation.

According to the US firm Enbridge Energy Partners’ filing with the United States Securities and Exchange Commission, as of September 30, 2013, the cost of cleanup was $1.035 billion US, not including possible additional fines and penalties that might be imposed by US authorities in the future.

In its decision, the Joint Review Panel estimated the cost a major oil spill from the Northern Gateway project would be about $693 million.  As part of the 209 conditions, the JRP ordered Enbridge to set aside “financial assurances” totaling $950 million.

Note all costs in this article are for a pipeline breach. The Joint Review Panel had different estimates for a tanker spill and the liability rules for marine traffic are different from pipelines.

In its filing for the third quarter of 2013, with the SEC, Enbridge Energy Partners say that the cost up until September 2013 had “exceed[ed] the limits of our insurance coverage.” The same filing says that Enbridge is in a legal dispute with one its insurers.

In its SEC filing, Enbridge says:

Lakehead Line 6B Crude Oil Release
We continue to perform necessary remediation, restoration and monitoring of the areas affected by the Line 6B crude oil release. All the initiatives we are undertaking in the monitoring and restoration phase are intended to restore the crude oil release area to the satisfaction of the appropriate regulatory authorities.
As of September 30, 2013, our total cost estimate for the Line 6B crude oil release is $1,035.0 million, which is an increase of $215.0 million as compared to December 31, 2012. This total estimate is before insurance recoveries and excluding additional fines and penalties which may be imposed by federal, state and local governmental agencies, other than the Pipeline and Hazardous Materials Safety Administration, or PHMSA, civil penalty of $3.7 million, we paid during the third quarter of 2012. On March 14, 2013, we received an order from the EPA, or the Environmental Protection Agency, which we refer to as the Order, that defined the scope which requires additional containment and active recovery of submerged oil relating to the Line 6B crude oil release. We submitted our initial proposed work plan required by the EPA on April 4, 2013, and we resubmitted the workplan on April 23, 2013. The EPA approved the Submerged Oil Recovery and Assessment workplan, or SORA, with modifications on May 8, 2013. We incorporated the modification and submitted an approved SORA on May 13, 2013. The Order states that the work must be completed by December 31, 2013.

The $175.0 million increase in the total cost estimate during the three month period ending March 31, 2013, was attributable to additional work required by the Order. The $40.0 million increase during the three month period ending June 30, 2013 was attributable to further refinement and definition of the additional dredging scope per the Order and associated environmental, permitting, waste removal and other related costs. The actual costs incurred may differ from the foregoing estimate as we complete the work plan with the EPA related to the Order and work with other regulatory agencies to assure that our work plan complies with their requirements. Any such incremental costs will not be recovered under our insurance policies as our costs for the incident at September 30, 2013 exceeded the limits of our insurance coverage.

According to the SEC filing, the breakdown of costs include $2.6 million paid to owners of homes adversely impacted by the spill.

Despite the efforts we have made to ensure the reasonableness of our estimates, changes to the recorded amounts associated with this release are possible as more reliable information becomes available. We continue to have the potential of incurring additional costs in connection with this crude oil release due to variations in any or all of the categories described above, including modified or revised requirements from regulatory agencies in addition to fines and penalties as well as expenditures associated with litigation and settlement of claims.
The material components underlying our total estimated loss for the cleanup, remediation and restoration associated with the Line 6B crude oil release include the following:
(in millions)

Response Personnel & Equipment  $454

Environmental Consultants  $193

Professional, regulatory and other $388

Total $ 1,035

For the nine month periods ended September 30, 2013 and 2012, we made payments of $62.3 million and $120.9 million, respectively, for costs associated with the Line 6B crude oil release. For the nine month period ended September 30, 2013, we recognized a $2.6 million impairment for homes purchased due to the Line 6B crude oil release which is included in the “Environmental costs, net of recoveries” on our consolidated statements of income. As of September 30, 2013 and December 31, 2012, we had a remaining estimated liability of $265.9 million and $115.8 million, respectively.

As for insurance, Enbridge Energy Partners say:

The claims for the crude oil release for Line 6B are covered by the insurance policy that expired on April 30, 2011, which had an aggregate limit of $650.0 million for pollution liability. Based on our remediation spending through September 30, 2013, we have exceeded the limits of coverage under this insurance policy. During the third quarter 2013, we received $42.0 million of insurance recoveries for a claim we filed in connection with the Line 6B crude oil release and recognized as a reduction to environmental cost in the second quarter of 2013. We recognized $170.0 million of insurance recoveries as reductions to “Environmental costs, net of recoveries” in our consolidated statements of income for the three and nine month periods ended September 30, 2012 for the Line 6B crude oil release. As of September 30, 2013, we have recorded total insurance recoveries of $547.0 million for the Line 6B crude oil release, out of the $650.0 million aggregate limit. We expect to record receivables for additional amounts we claim for recovery pursuant to our insurance policies during the period that we deem realization of the claim for recovery to be probable.

In March 2013, we and Enbridge filed a lawsuit against the insurers of our remaining $145.0 million coverage, as one particular insurer is disputing our recovery eligibility for costs related to our claim on the Line 6B crude oil release and the other remaining insurers assert that their payment is predicated on the outcome of our recovery with that insurer. We received a partial recovery payment of $42.0 million from the other remaining insurers and have since amended our lawsuit, such that it now includes only one insurer. While we believe that our claims for the remaining $103.0 million are covered under the policy, there can be no assurance that we will prevail in this lawsuit.

 

The Joint Review, Enbridge and Michigan

The Joint Review Panel based its finding on the Marshall, Michigan spill on the figure of $767 million from the summer of 2012 –again showing the limitations of the JRP’s evidentiary deadlines since the costs are now much higher.

The JRP quoted Enbridge as saying:

Northern Gateway considered the high costs of the Marshall, Michigan spill, which were at least $252,000 per cubic metre ($40,000 per barrel), to be an outlier or a rare event because the spill occurred in a densely populated area, because the pipeline’s response time was abnormally long, and because there was the prospect of potentially lengthy legal proceedings.

Enbridge assured the JRP that the corporate culture and management changes and equipment upgrades since the Marshall, Michigan spill lowered that chances of a similar event.

The company based its models for the JRP on much smaller spills, including one spill at Lake Wabamun, Alberta from a train not a pipeline (Vol. 2 p 357)

Enbridge’s risk assessment did not “generate an estimate of economic losses caused
by a spill.”

The JRP says Northern Gateway relied on its analysis of literature, and spill events experienced by Enbridge and other liquid hydrocarbon carriers in Alberta and British Columbia. After assessing all of this information, Northern Gateway regarded the high costs of a cleanup as “conservative”–meaning the company expects costs to be lower than its estimates in evidence before the JRP.

In Northern Gateway’s view the most costly pipeline spill incident would be a full-bore oil pipeline rupture, with an estimated cost of $200 million, and an extremely low probability of occurrence.

Haisla evidence

In their evidence, the Haisla (and other First Nations and intervenors) were doubtful about Northern Gateway’s assurances. The Haisla asked that Enbridge have a minimum of $1 billion in liability, an amount Enbridge has now exceeded in Michigan.

Haisla Nation estimated the cost of damage to ecosystem services because of a terrestrial oil spill from Northern Gateway’s pipeline would be in the range of $12,000 to $610 million for a 30-year period.

The Haisla’s cost estimates were based on values for environmental goods and services and probabilities of spills that were independent of Northern Gateway’s parameters for estimating oil spill costs. In contrast to Northern Gateway’s estimated spill frequency and costs, the Haisla predicted that spills would occur more often and placed a higher value on damages to environmental goods and services.

Haisla Nation argued that Northern Gateway overestimated its ability to detect and respond to a spill. In the Haisla’s view this resulted in the cost of a spill and the requisite financial assurances being understated. Haisla cited several factors, including: remote location, limited access, challenging terrain, seasonal conditions, and river flow conditions that would cause the cost of cleaning up a spill in the Kitimat River valley to be significantly greater than the costs associated with Enbridge’s Marshall, Michigan spill.

For these reasons, Haisla proposed that Northern Gateway should be required to obtain a minimum of $1 billion of liability coverage through insurance and financial assurances. Haisla said that Northern Gateway should file annually the report from an independent third party assessing the financial assurances plan. (Vol 2 p359)

In response Northern Gateway said:

Northern Gateway said that Haisla’s findings were based on a number of fundamental methodological flaws and a lack of probability analysis to support the high frequency of occurrence of oil spill events. Northern Gateway argued that Haisla’s estimates of ecosystem service values were inflated because they were based on values from unrelated studies. In Northern Gateway’s view, Haisla relied on high passive use values that were not justified.

JRP ruling

As it has in most of its decision, the JRP accepted Northern Gateway’s evidence, including its explanation of the Marshall, Michigan spill and then went on to base its spill cost estimates not on a pipeline breach but on the 2005 railway spill at Lake Wabumum, near White Sands, Alberta.

The Panel accepts that the cleanup costs for the Marshall, Michigan spill were orders of magnitude higher because of the extended response time. In this application, the Panel accepts Northern Gateway’s commitment to complete the shutdown in no more than 13 minutes after detection. For this reason the Panel did not use the Marshall spill costs in its calculations. The spill volume and the resulting costs are directly dependent on the Northern Gateway’s control room staff and the pipeline control system fully closing the adjacent block valves no longer than 13 minutes from the detection of an alarm event, as well as the amount of oil which would drain out of the pipeline after valve closure due to elevation differences.

The Panel decided on a total unit cost of $138,376 per cubic metre ($22,000 per barrel). This is midway between the unit cost of $88,058 per cubic metre ($14,000) per barrel proposed by Northern Gateway and the unit cost of $188,694 per cubic metre ($30,000 per barrel) for the Lake Wabamun spill. It is about one-half of the Marshall spill’s unit cost. Giving weight to the Lake Wabamun costs recognizes actual costs experienced in a Canadian spill and the greater costs of spills in high consequence areas. In these areas, individuals, populations, property, and the environment would have a high sensitivity to hydrocarbon spills. The deleterious effects of the spill would increase with the spill volume, the extent of the spill, and the difficulty in accessing the spill area for cleanup and remediation.

Using these spill volume and unit cost values in the calculation below, the Panel estimated the total cost of a large spill could be $700 million. Total cost of a spill = 31,500 barrels x $22,000 per barrel = $693 million, or $700 million when rounded up.

(p362)

The Panel based the financial assurances requirements for Northern Gateway on a spill with a total estimated cost of $700 million and directs Northern Gateway to develop a financial assurances plan with a total coverage of $950 million that would include the following components:
i. Ready cash of $100 million to cover the initial costs of a spill;
ii. Core coverage of $600 million that is made up of stand-alone, third party liability insurance and other appropriate financial assurance instruments, and
iii. Financial backstopping via parental, other third party guarantees, or no fault insurance of at least $250 million to cover costs that exceed the payout of components i. and ii.
The financial backstopping would be available to fill the gap if the spill volumes or unit costs were under-estimated or if the payout from the core coverage would be less than 100 per cent.

The Panel noted that:

The evidence indicates that there is some probability that a large oil spill may occur at some time over the life of the project. In these circumstances the Panel must take a careful and precautionary approach because of the high consequences of a large spill. The Panel has decided that Northern Gateway must arrange and maintain sufficient financial assurances to cover potential risks and liabilities related to large oil spills during the operating life of the project.

Northern Gateway committed to investing $500 million in additional facilities and mitigation measures such as thicker wall pipe, more block valves, more in-line inspections, and complementary leak detection systems. This initiative should enhance the safety and reliability of the system and help reduce and mitigate the effects of a spill, but it would not eliminate the risk or costs of spills. This initiative is not a direct substitute for third party liability insurance and does not eliminate the need for liability insurance or any other form of financial assurance to cover the cost of a spill. (p 361)

So the JRP decision comes down to this, if you accept Northern Gateway’s position that pipeline spills are rare and mostly small, then the company has the financial resources to cover the damage. If, however, Northern Gateway is wrong and the costs of a pipeline cleanup exceed the $950 million required by the Joint Review Panel, as has happened in Michigan, then those JRP conditions are already obsolete.

(Northwest Coast Energy News encourages all readers to read the complete JRP report  and SEC filing since space and readability does not permit fully quoting from the report)

Enbridge misses deadline to clean up Michigan’s Morrow Lake; EPA cites reluctance to do winter cleanup

EPA map of Kalamazoo River
EPA map of river closures and dredging operations on the Kalamazoo River during 2013. (EPA)

Enbridge has missed the US Environmental Protection Agency’s deadline to clean up parts of the Marshall, Michigan bitumen spill by December 31, 2013.

Local television news, WOOD-TV says the EPA is now considering “enforcement options.”
The EPA had already granted Enbridge a 10 month extension that the company requested in March, 2013, setting the new December deadline.

In November, Enbridge requested a second extension. The EPA denied that request.

From the EPA letter it appears that, as in previous years, Enbridge is trying to avoid continuing clean up work into the winter. The EPA rejects that position, telling Enbridge it shouldn’t wait until the spring run off could spread the sunken bitumen.

The EPA says that beginning in March, 2013, “Enbridge has successfully removed oil and sediment from two of the three major impoundment areas identified in the order and from several smaller sediment trap locations.”

The area that Enbridge failed to clean up is known as the Morrow Lake and Morrow Lake Delta. The cleanup in that area was delayed when the Comstock Township planning commission unanimously  denied Enbridge a permit for “dredge pad” after fierce public opposition

The letter to Enbridge, from Jeffrey Kimble, Federal On-Scene Coordinator denying the extension is another scathing indictment of Enbridge’s attitude toward the public and the cleanup, citing Enbridge failing to prepare “adequate contingency plans,” by failing to recognize the “serious opposition” the dredging plans.

Although the EPA had told Enbridge to consider alternative plans—and Enbridge claimed it did that—the EPA found the Enbridge’s own logs showed the company didn’t start considering alternatives until it was obvious that Comstock Township would reject their dredging plans.

The EPA letter also reveals that once again Enbridge is reluctant to do further cleanup work during the Michigan winter. The EPA rejects that stance, saying that “Removal of oiled sediments prior to the spring thaw will lessen the potential oiled sediment transport in the spring to Morrow Lake via increased river velocities from rain and ice melt.”

Although we recognize that the work required by the Order is unlikely to be completed by December 31, 2013, U.S. EPA believes that had Enbridge taken appropriate steps earlier as requested, it would not require an extension now. In particular, U.S. EPA believes that Enbridge has continuously failed to prepare adequate contingency plans for a project of this nature. For example, U.S. EPA acknowledges that failure to obtain a site plan approval for use of the CCP property for a dredge pad was a setback in the timely completion of the work in the Delta.

However, Enbridge failed to prepare any contingency plans recognizing the possibility of such an occurrence. Enbridge has known since at least the middle of July 2013 that there was serious opposition to its proposed use of the CCP property. When it became clear in August 2013 that opposition to the site use might delay the project, U.S. EPA directed Enbridge to “conduct a more detailed review of your options in short order.”

Although your letter claims that Enbridge “has considered such alternatives,” your logs indicate that Enbridge did not hold initial discussions with the majority of these property owners until long after the final decision to abandon plans for use of the CCP property. These contact logs do not demonstrate that Enbridge fully explored and reviewed alternative options in a timely manner so as to avoid delay in completion of the work. Although Enbridge claims that use of identified alternative properties would be denied by Comstock Township, Enbridge did not present any site plans to the Township for approval (other than use of the county park for staging of frac tanks). To the extent that any of Enbridge’s contingency plans include the use of land for dredge pads, U.S. EPA believes that Enbridge should begin multiple submissions for property use until one is accepted….

Enbridge claims that it cannot install winter containment in the Delta to prevent the potential migration of sediments to the lake. To support that claim, Enbridge has attached a letter from STS directing Enbridge to remove anchors and associated soft containment during winter monthsas these structures could damage STS’s turbines. However, none of the correspondence provided by Enbridge discusses the use of more secure containment methods, such as metal sheet piling, which may not pose the same risks as soft containment structures. Enbridge should consider using sheet piling to construct cells which would both allow winter work and contain the sediment during that work. Enbridge should therefore try to obtain access from STS for this specific work, and for other appropriate work, for the winter timeframe. Use of sheet pile cells would allow continued operations during the winter, especially in the southern zone of the Delta outside of the main river channel. Removal of oiled sediments prior to the spring thaw will lessen the potential oiled sediment transport in the spring to Morrow Lake via increased river
velocities from rain and ice melt.

Finally, U.S. EPA is unwilling to allow Enbridge to wait until after the likely spring high
velocity river flush to reinstall the E-4 containment structures. U.S. EPA has reviewed Enbridge’s modeling, which Enbridge claims supports its requested timeline, and has found it incomplete. The model has not incorporated, and does not match, field observation of flow velocities and water levels and their potential to impact upstream critical structures if containment is in place. Moreover, U.S. EPA completely disagrees with Enbridge’s assertion that there is no evidence of migration of submerged oil during high flow events. The results of three years of poling and sheen tracking demonstrate that Line 6B oil is mobile during periods of
high flow. Now that Enbridge has a five year permit from MDEQ for the E-4 containment system, U.S. EPA reiterates that this containment must be in place immediately upon thawconditions in the spring….

Although Enbridge’s proposed two phase approach may have components that can be incorporated into a final plan, it should not be considered the approved way forward. U.S. EPA believes that pausing the work cycle until new poling can be done in June or July of 2014 could again result in a wasted construction season in the Delta. Enbridge should consider and utilize a combination of techniques in the plan. For example, several dredge pad sites have been identified by Enbridge. Enbridge should obtain approval for one of these sites, or a combination of smaller sites, so as to support hydraulic dredging in conjunction with the current approved
approach and any potential dry excavation techniques. Enbridge should also consider other winter work techniques, such as cell build out and dewatering in the Delta via sheet piling.

As always, U.S. EPA will continue to work with Enbridge to develop adequate plans and complete the work required by the Order. However, nothing in this letter excuses any noncompliance with the Order nor does it serve as the granting of any extension to any deadline in the Order. U.S. EPA reserves all its rights to pursue an enforcement action for any noncompliance with the Order.

The EPA letter also calls into question the ruling of the Joint Review Panel on the Enbridge Northern Gateway. The JRP accepts, without question, Enbridge’s assurances that the company has changed its attitude and policies since the long delay in 2010 in detecting the pipeline rupture in Marshall, Michigan.

The JRP, on the other hand, accepts, without question, Enbridge’s assurances that it has expertise in winter oil recovery from a pipeline spill.

Parties questioned Northern Gateway about locating and recovering oil under ice. Northern Gateway said that Enbridge conducts emergency exercises in winter and that Northern Gateway would learn from those experiences.
Northern Gateway outlined a number of oil detection techniques including visual assessment (at ice cracks and along the banks), drills, probes, aircraft, sniffer dogs, and trajectory modelling. It said that, once located, oil would be recovered by cutting slots into the ice and using booms, skimmers, and pump systems to capture oil travelling under the ice surface.

The company said that oil stranded under ice or along banks would be recovered as the ice started to melt and break up. It discussed examples of winter oil recovery operations during Enbridge’s Marshall, Michigan incident, and said that operational recovery decisions would be made by the Unified Command according to the circumstances.

Northern Gateway said that equipment caches would be pre-positioned at strategic locations, such as the west portal of the Hoult tunnel. It said that decisions regarding the location or use of pre-positioned equipment caches would be made during detailed design and planning, based on a number of considerations including, but not limited to, probability of a spill, access, site security,
environmental sensitivities, and potential for oil recovery at the response site.

(vol 2 page 153)

In its ruling, the Joint Review Panel said

The Panel finds that Northern Gateway’s extensive evidence regarding oil spill modelling, prevention, planning, and response was adequately tested during the proceeding, and was credible and sufficient for this stage in the regulatory process.
Parties such as the Province of British Columbia, Gitxaala Nation, Haisla Nation, and Coalition argued that Northern Gateway had not provided enough information to inform the Panel about proposed emergency preparedness and response planning. The Panel does not share this view.

Northern Gateway and other parties have provided sufficient information to inform the Panel’s views and requirements regarding malfunctions, accidents, and emergency preparedness and response planning at this stage of the regulatory process.

Many parties said that Northern Gateway had not demonstrated that its spill response would be “effective.” Various parties had differing views as to what an effective spill response would entail.

The Panel is of the view that an effective response would include stopping or containing the source of the spill, reducing harm to the natural and socio-economic environment to the greatest extent possible through timely response actions, and appropriate follow-up and monitoring and long-term cleanup. Based on the evidence, in the Panel’s view, adequate preparation and planning can lead to an effective response, but the ultimate success of the response would not be fully known
until the time of the spill event due to the many factors which could inhibit the effectiveness of the response. The Panel finds that Northern Gateway is being proactive in its planning and preparation for effective spill response….

The Panel is of the view that an effective response does not guarantee recovery of all spilled oil, and that that no such guarantee could be provided, particularly in the event of a large terrestrial, freshwater, or marine spill.

The oil spill preparedness and response commitments made by Northern Gateway cannot ensure recovery of the majority of oil from a large spill. Recovery of the majority of spilled oil may be possible under some conditions, but experience indicates that oil recovery may be very low due to factors such as weather conditions, difficult access, and sub-optimal response time, particularly for large marine spills. …

To verify compliance with Northern Gateway’s commitments regarding emergency preparedness and response, and to demonstrate that Northern Gateway has developed appropriate site-specific emergency preparedness and response measures, the Panel requires Northern Gateway to demonstrate
that it is able to appropriately respond to an emergency for each 10-kilometre-long segment of the pipeline.

The Panel notes the concerns of intervenors regarding Northern Gateway’s ability to respond efficiently and effectively to incidents in remote areas, and its plan to consider this during detailed design and planning. The Panel finds that Northern Gateway’s commitment to respond immediately to all spills and to incorporate response time targets within its spill response planning is sufficient to
address these concerns. Northern Gateway said that its emergency response plans would incorporate a target of 6 to 12 hours for internal resources to arrive at the site of a spill. It also said that it would target a response time of 2 to 4 hours at certain river control points.

The Panel agrees with Northern Gateway and several intervenors that access to remote areas for emergency response and severe environmental conditions pose substantial challenges. The Panel notes that the company has committed to develop detailed access management plans and to evaluate contingencies where timely ground or air access is not available due to weather, snow, or other logistic
or safety issues.

Despite the EPA letter (which admittedly was released long after the JRP evidentiary deadline) that shows that Enbridge did not consult the people of Comstock Township, Michigan, the JRP says

The Panel accepts Northern Gateway’s commitment to consult with communities, Aboriginal groups, and regulatory authorities. The objective of this consultation is to refine its emergency preparedness and response procedures by gaining local knowledge of the challenges that would be present in different locations at different times of the year
(Vol 2 p 165-167)

EPA letter to Enbridge denying deadline extension  (pdf)

How Gateway’s plans to dredge Douglas Channel show the limitations of the JRP mandate and ruling

(First in series of reports on how the Joint Review Panel report will affect the Kitimat region)

JRP map of blasting on Douglas Channel
Joint Review map of Northern Gateway plans for dredging and blasting on Douglas Channel (JRP)

 

If there is a significant flaw in the Joint Review Panel report on Northern Gateway, it can be found in the panel’s analysis of Enbridge Northern Gateway’s plans to blast and dredge at the proposed Kitimat terminal site.

While the Joint Review Panel does consider what it calls “cumulative effects,” the panel plays down those effects and offers no specifics about interaction between the Northern Gateway project and the two liquified natural gas projects, the KM LNG project at Bish Cove and the BC LNG floating terminal at the old log dump.

It appears the JRP considered the legacy effects of the Rio Tinto Alcan smelter and other Kitimat industries while not taking into consideration future development.

The dredging and blasting planned by Northern Gateway, as Enbridge said in its evidence,  appears to have only a minimal effect on Douglas Channel.

A glance at the map in the Joint Review ruling shows that that the dredging and blasting site is directly opposite Clio Bay, where Chevron, in partnership with the Haisla Nation, plan a remediation project using marine clay from the Bish Cove construction site to cap decades of sunken and rotting logs.

The Clio Bay project was not part of the evidence before the Joint Review Panel, the plans for the project were not formulated until well after the time for evidence before the JRP closed. But those deadlines show one area where the rules of evidence and procedure fail the people of northwestern BC.

The JRP is a snapshot in time and changes in the dynamics of the industrial development in the Kitimat Arm are not really considered beyond the terms of reference for the JRP.

It appears from the report that Enbridge plans to simply allow sediment from the blasting and dredging to float down Douglas Channel, dispersed by the currents and the outflow from the Kitimat River.

Northern Gateway said that dredging and blasting for marine terminal construction would result in a sediment plume that would extend over an area of 70,000 square metres for the duration of blasting activities.

Approximately 400 square metres of the assessed area of the marine terminal is expected to receive more than 1 centimetre of sediment deposition due to dredging. Outside of this area, typical sediment deposition levels alongshore where sediment is widely dispersed (a band approximately 4 kilometres long and 400 metres wide) are very low; in the range of 0.001 to 0.1 centimetres. Dredging and blasting activities are expected to occur over a period of approximately 18 weeks.

Northern Gateway expected most of the sediment plume created by construction activities to be minor in relation to natural background levels.

Northern Gateway would use bubble curtains to reduce pressure and acoustic effects of blasting, and silt curtains to reduce the effect of sedimentation from dredging. It said that bubble curtains are used extensively for other activities, such as pile driving, to reduce the effect of high pressure pulses that can cause injury to fish.

It added that bubble curtains have been tested extensively with blasts, and literature shows they are effective.

Northern Gateway said that physical effects from suspended sediment on marine fish and invertebrates could include abrasion and clogging of filtration mechanisms, which can interfere with ingestion and respiration. In extreme cases, effects could include smothering, burial, and mortality to fish and invertebrates. Direct chemical-related effects of suspended sediment on organisms, including reduced growth and survival, can also occur as a result of the uptake of contaminants
re-suspended by project construction activities, such as dredging and blasting, and as a result ofstorm events, tides, and currents.

The Haisla Nation and Raincoast Conservation objected to Northern Gateway’s figures, noting

Northern Gateway’s sediment and circulation model and its evidence related to contaminated sediment re-suspension at the terminal site. Both parties said that the sediment model was applied for the spring, when the increase in total suspended solids would be negligible compared to background values. In the event of delays, blasting and dredging would likely occur at other times of the year when effects would likely be higher, and these scenarios were not modelled.

The panel’s assessment of the area to be blasted found few species:

Species diversity within Kitimat Arm’s rocky intertidal community is generally low. Barnacles, mussels, periwinkles, and limpets can be found on rocky substrate. Sea urchins, moon snails, sea anemones, sea stars, and sea cucumbers are in shallow subtidal areas. Sandy areas are inhabited by commercially-harvested bivalves such as butter clams and cockles.

Northern Gateway told the JRP that it would “offset” any damage to Douglas Channel caused by the blasting and dredging

Northern Gateway said that construction, operations, and decommissioning of the marine terminal would result in both permanent and temporary alteration of marine fish habitat. Dredging and blasting, and installing physical structures in the water column for the marine terminal would permanently alter marine fish habitat. Based on the current terminal design, in-water site preparation would result in the physical alteration of approximately 1.6 hectares of subtidal marine habitat and 0.38 hectares of intertidal marine habitat. Northern Gateway expected approximately 353 square metres of subtidal marine habitat and 29 square metres of intertidal habitat to be permanently lost.This habitat would be compensated for by marine habitat offsets.

The project’s in-water vertical structures that would support the mooring and berthing structures could create new habitat, offsetting potential adverse effects. The structures may act as artificial reefs, providing marine fish habitat, food, and protection from predation. Although organisms currently inhabiting the work area would be killed, the exposed bedrock would be available for colonization as soon as the physical works are completed.

In its finding on marine sediment, the panel, as it does throughout the ruling, believes that the disruption to the environment caused by previous and ongoing human activity, means that the Northern Gateway Kitimat terminal won’t make that much difference.

Sediment quality in the marine environment is important because sediment provides habitat for benthic aquatic organisms. Northern Gateway’s baseline data for the area immediately surrounding the marine terminal indicated some contamination of water, sediments, and benthic organisms from previous industrial activity. Industrial activities in the Kitimat area have released contaminants through air emissions and effluent discharges since the 1960s. Sources of contaminants to Kitimat Arm
include effluent from a municipal wastewater treatment plant, the Alcan smelter, Methanex Corporation’s methanol plant, and the Eurocan pulpmill, as well as storm water runoff from these operations and the municipality.

Area is largely controlled by natural outflow from the Kitimat River with suspended sediment levels being highest during peak river runoff (May to July, and October) and lowest during winter. Storm events, tides, and currents can also suspend sediments. Levels of total suspended solids fluctuate seasonally and in response to climatic variations, but are generally highest during the summer.

Commercial and recreational vessels currently operating in the area may increase suspended solids by creating water turbulence that disturbs sediments. Given the current sediment contamination levels and the limited area over which sedimentation from construction activities would be expected to disperse, the Panel finds that the risk posed by disturbed contaminated sediment is low. Northern Gateway has committed to monitoring during construction to verify the predicted effects on sediment and water quality for both contaminants and total suspended solids..

The dredging and blasting section of the Joint Review Report is small when compared to the much more extensive sections on pipeline construction and tanker traffic, and the possible effects of a catastrophic oil spill.

Although minor, the marine sediment section exposes the question that was never asked, given the disruptions from years of log dumping at Clio Bay and Minette Bay and the decades of  developments at the mouth of the Kitimat River, and future development from LNG, when do cumulative effects begin to overwhelm? How much is enough? How much is too much? If every project continues to be viewed in isolation, what will be left when every project is up and running?

 

“Trust me is not good enough,” harsh BC government argument slams Enbridge, rejects Northern Gateway project

The government of British Columbia has filed a harsh assessment of Enbridge Northern Gateway in its final arguments submitted May 31 to the Joint Review Panel—much harsher than the government press release giving notice of the rejection suggests.

“‘Trust me’ is not good enough in this case,” the filing by BC government lawyer Christopher Jones says of Enbridge’s plans to handle any possible disaster from either a pipeline rupture or a tanker spill.

Some of the arguments from the province’s lawyers echo points about the Kitimat Valley raised by Douglas Channel Watch and the Haisla Nation, at one point, pointing directly to evidence from Douglas Channel Watch’s Dave Shannon.

The news release repeats Premier Christy Clark’s five conditions for the Northern Gateway and other projects, putting a positive spin on the much harsher legal argument.

“British Columbia thoroughly reviewed all of the evidence and submissions made to the panel and asked substantive questions about the project including its route, spill response capacity and financial structure to handle any incidents,” said Environment Minister Terry Lake. “Our questions were not satisfactorily answered during these hearings.”

“We have carefully considered the evidence that has been presented to the Joint Review Panel,” said Lake. “The panel must determine if it is appropriate to grant a certificate for the project as currently proposed on the basis of a promise to do more study and planning after the certificate is granted. Our government does not believe that a certificate should be granted before these important questions are answered.”

The provincial government has established, and maintains, strict conditions in order for British Columbia to consider the construction and operation of heavy-oil pipelines in the province.

  • Successful completion of the environmental review process. In the case of Northern Gateway, that would mean a recommendation by the National Energy Board Joint Review Panel that the project proceed;
  • World-leading marine oil spill response, prevention and recovery systems for B.C.’s coastline and ocean to manage and mitigate the risks and costs of heavy-oil pipelines and shipments;
  • World-leading practices for land oil spill prevention, response and recovery systems to manage and mitigate the risks and costs of heavy-oil pipelines;
  • Legal requirements regarding Aboriginal and treaty rights are addressed, and First Nations are provided with the opportunities, information and resources necessary to participate in and benefit from a heavy-oil project; and
  • British Columbia receives a fair share of the fiscal and economic benefits of a proposed heavy-oil project that reflect the level, degree and nature of the risk borne by the province, the environment and taxpayers.

Final argument

In its filing the province tells the JRP:

While the Joint Review Panel (“JRP”) may of course consider other factors in its recommendation, the Province submits that the JRP must accord very significant weight, in the case of this project, to the fact that NG’s plans for terrestrial and marine spill response remain preliminary and that it cannot, today, provide assurance that it will be able to respond effectively to all spills. Given the absence of a credible assurance in this regard, the Province cannot support the approval of or a positive recommendation from the JRP regarding, this project as it was presented to the JRP.

In the alternative, should the JRP recommend approval of the pipeline, the JRP must impose clear, measurable and enforceable conditions that require NG to live up to the commitments it has made in this proceeding.

Hazards from Kitimat’s geoglacial clay

The provincial government identifies a major potential hazard in the Kitimat valley, glacio-marine clay deposits that “threaten the integrity of the pipeline.”

Overall the province appears to accept the arguments from Douglas Channel Watch and other environmental groups that geo hazards along the pipeline route present a significant risk, one perhaps underestimated by Enbridge Northern Gateway.

NG does not dispute that spills from the pipeline may occur. While the project will be new, and built using modern technology, the fact remains that pipeline spills do happen. Indeed, Enbridge had 11 releases greater than 1000 barrels between 2002 and 2012…

The Province has concerns about the assertions NG has made regarding the probability for full-bore releases resulting from geohazards. NG asserts that full-bore spills will be very rare. However, this assertion must be considered in light of the fact that NG’s analysis of the geohazards that the pipeline could face is at a preliminary stage….

The rugged topography of West Central British Columbia is prone to slope failures.
Terrain instability may pose significant challenges for linear development.
Despite these challenging admits that its assessment of existing and potential geohazards along the pipeline route is not complete and that further investigations and more detailed geohazard mapping are required. For instance, although NG acknowledges that the potential presence of glacio-marine clays in the lower Kitimat Valley can threaten the integrity of a pipeline; its report on glacio-marine clay fails to identify a significant area of potential instability that had been previously reported in the relevant literature…

Since all geotechnical hazards have not been identified with the investigations carried out to date, and since comprehensive investigations will not be completed until the detailed design phase, NG has but a rough idea of the mitigation measures that may be employed in order to mitigate the geotechnical hazards that may be encountered…

Spill response

The province’s arguments also indicates that Enbridge Northern Gateway has not done a good enough job regarding spill response, whether from a full bore rupture or a pin hole leak.

it must be remembered that full-bore spills are less frequent than smaller spills, which could still have a significant environmental effect. Indeed, since risk equals consequence times probability, smaller spills could pose a higher risk as they are more frequent. While NG has produced considerable evidence with respect to the likelihood and effects of full-bore spills… the evidence concerning the potential for other spills is limited. While the Province supports assessing the effects of any spill based on a full-bore release, as it would allow for an analysis of the worst-case scenario, focus on full-bore releases should not eliminate consideration of the potential impact of smaller events…

NG stated that [a] table [in the evidence], which includes probabilities for medium sized spills, would be “replaced by. a detailed characterization of each pipeline kilometre and region as part of the ongoing risk assessment work,” but the province says, a later table that “now replaces the concept of large and medium spills”. focussed only on full-bore releases, a relatively rare event.

Similarly, NG also calculated spill return periods for pinhole and greater-than-pinhole events. Taking the figures NG for “greater-than-pinhole” releases results in a spill return figure of 76.7 years. The Province also has concerns about the information that NG has provided in this regard. First, because it focussed on spill events, there is no information about spill size, which, we submit is a critical issue in considering the risk posed by these kinds of events. Second, NG does not include the potential for spills that could occur as a result of “operating and maintenance procedures” that deviate from the norm. Finally, NG assumes that all geotechnical threats would result in a full-bore rupture. This assumption appears to be incorrect…

Premier Christy Clark has, as part of her five conditions, said there must be a world class spill response system. Enbridge responded by saying there will be. The province then turns around and says Enbridge has failed to do prove it.

Because of the potential for spills, and their impact, NG has committed to develop a comprehensive spill response capability. Indeed, NG has stated that it intends to have a “world-class response capability” for the Project. Given the real potential for spills to occur, and the devastating effect of a spill should a significant one take place, the Province submits that NG must show that it would be able to effectively respond to a spill. As set out below, the Province submits that it has failed to do so.

High stream flow, heavy snow at Kitimat

Again, the province appears to accept arguments from Douglas Channel Watch that Enbridge has underestimated the challenges of handling a spill in a remote area. The province also accepts the argument that booms are ineffective in high stream flow in the Kitimat River.

Although it asserts that it will be able to effectively respond to any spill, NG admits that responding to a spill from the pipeline will be challenging. In particular, it admits that a spill into a watercourse at a difficult to access location would present the greatest difficulty for clean-up and remediation…

Many parts of the pipeline will be located in remote areas, located some distance from road networks and population centres. For example, many of the rivers… are identified as remote or having no access. Road access to the pipeline and places where a spill might travel down a watercourse is important to allow for effective spill response…

In some cases, the steepness of the terrain will make responding to spills very challenging. NG acknowledges that the Coast Mountains’ topography is extreme…

As the JRP noted during cross examination by the Province of NG with respect to the Clore River, it has had the opportunity to take a view of the entire route. It will therefore know the steep and rugged terrain through which the pipeline would pass.

The presence of woody debris could also pose a challenge to spill response, requiring a shift of response activities to upstream locations…

If a spill were to occur during a period of high flow conditions, a common occurrence in British Columbia rivers, then some aspects of the response may have to be curtailed, or at least delayed until the high flow event recedes. At certain water velocities, booms become ineffective, and are potentially unsafe to operate.

The presence of heavy snow could also impede access during response operations, requiring use of snowmobiles, snow cats, and helicopters. In the Upper Kitimat and Hoult Creek Valleys, snow accumulation can reach 8-9 metres. However, weather may limit the ability of helicopters to aid in spill response…

Many of these challenges are recognized by NG. In the Preliminary Kitimat River Drainage Area Emergency Preparedness Report (“Kitimat Report”), NG refers to the challenges of winter conditions, avalanches and debris slides, heavy snow, spring melt, Fall freeze-up, patchy ice, and fast-flowing watercourses.

Sinking dilbit

The province also accepts the argument that under some circumstances that diluted bitumen can sink, arguments raised by David Shannon of Douglas Channel Watch.

These challenges are compounded by the fact that in certain conditions diluted bitumen (“dilbit”) can sink in a watercourse. This occurred in the case of Enbridge’s spill in Michigan. This was, as a result, an issue of significant importance to the parties in this proceeding…

The evidence presented by NG in this regard is inconsistent. For example, some evidence it presented suggests that dilbit may sink when it enters water, after a process of weathering; other evidence it has submitted suggests that dilbit will only sink if it combines with sediment. In its response to [a submission by the Haisla Nation] NG states that “If diluted bitumen becomes heavily weathered some oil may sink in fresh water environments.” Similarly, in its response to Dave Shannon’s IR No. 1, NG states that 

Diluted bitumen emulsions will remain buoyant in waters with densities greater than approximately 1.015 g/cc. If the water density drops below approximately 1.015 g/cc,in zones of fresh-water intrusion, weathered and emulsified diluted bitumen products may sink to the depth where the density increases to above 1.015 g/cc.

Similar also is NG’s response to Dr. Weir’s IR No. 2.6, where NG states:

The weathered diluted bitumen would have a density approaching 1.0 g/cc, which indicates that once the diluted bitumen weathers it may be susceptible to sinking in fresh water.

Finally, in the Kitimat Report NG states that:

Examples that may lead to oil not remaining on the water surface include:
• Oils with specific gravities equal to or greater than the receiving medium (fresh- or saltwater)
• Oils that have weathered and, in losing lighter-end fractions, have reached a specific gravity equal to or greater than the receiving water
• Oil that is near the same density as the receiving water and that is characterized as a 3-dimensional flow (non-laminar to turbulent flow such as found in streams, rivers, areas with fast tidal currents, breaking waves)
• Oil with sediment (mixed into oil or adhered to oil droplets)…

…submerged oil may eventually sink with increased weathering, if in receiving water with lower density, or if sufficient sediment is incorporated.

Northern Gateway contradictory

The province’s argument goes on to point more inconsistencies with Northern Gateway’s submission on dilbit in rivers, telling the JRP “In short, what dilbit will do when it enters water remains unclear.”

On the other hand, another NG witness stated that dilbit cannot sink, as this would be contrary to an “immutable fact of physics”. In cross examination, Dr. Horn, Mr. Belore and other witnesses maintained that dilbit will only sink in the presence of suspended solids, or after a long period of weathering.

However, NG’s evidence with respect to the type of sediment that could combine with dilbit to form material that may sink in water is unclear. Dr. Horn testified that “fine grain sediments…provide the greatest amount of surface area which is one of the reasons that oil sank in [Michigan]”. On the other hand, Mr. Belore appeared to suggest that, in the marine context at least, finer sediments reduce the potential for oil to sink as they are lighter. The evidence with respect to the material that may bind to dilbit and contribute to its sinking is unclear…

NG’s views with respect to the flow conditions under which dilbit may sink is also contradictory. On the one hand, it states that “Higher flow rates and increased turbulence typically will entrain more oil into the water column leading to the potential for oil to enter pore spaces in permeable sediments.” On the other, it states that “Oil sinking is unlikely to occur in areas with fast currents…”

Evidence provided by other parties suggests that dilbit may sink when weathered. In particular, Environment Canada’s evidence in this proceeding contrasts sharply with NG’s. For example, Environment Canada states that:

Northern Gateway’s response planning model does not account for sinking oil or for oil suspended particulate matter interactions…For oils with densities close to that of water, like both the diluted bitumen and synthetic crude products, even small amounts of sediment can cause sinking. Environment Canada is concerned that oil sinking and oil-sediment interactions have been
underestimated in the provided scenarios. In the cases of both the Enbridge-Kalamazoo and the Kinder Morgan-Burnaby spills, significant oil-sediment interactions occurred.

The changes to dilbit as it ages in the environment may affect cleanup. Although initially buoyant in water, with exposure to wind and sun, as well as by mixing with water and sediment in the water, the density of dilbit can increase to the point that the oil may sink. Recovery and mitigation options for sunken oils are limited.

Not only has Environment Canada expressed the view that even small amounts of sediment may cause oil to sink, its witness also stated under cross-examination that high velocity rivers may carry high suspended sediment concentrations, and that, at certain times of the year, sediment load could enter the marine environment. Although NG acknowledges that sediment loads and oil-sediment interactions are a critical factor in predicting the behaviour of spilled oil, it has not, in Environment Canada’s opinion, provided a complete baseline data set on sediment loads, despite requests that such data be provided.

While NG has submitted information respecting the laboratory testing of dilbit, an Environment Canada expert testified that tests conducted in a laboratory setting provide only limited information that cannot be relied upon in isolation to predict the fate and behaviour of hydrocarbons spilled into the environment. Instead, information gathered from real spill events must inform the analysis, and consideration must be given to the conditions, including water temperature, suspended sediment concentrations and wind speed, to be encountered in the “real world”.

Environment Canada has also made it very clear that the evidence provided to date by NG does not allow for a full understanding of the behaviour of spilled dilbit. In the opinion of Environment Canada witnesses, the evidence has not provided sufficientclarity with respect to the weathering, evaporation or sedimentation processes dilbit may be subjected to in the environment. Given the unique nature of this product, further research is warranted before one can ascertain whether dilbit will sink or remain on the water surface. Those concerns were echoed by an expert retained by the Gitxaala Nation.

In addition, the evidence of other parties raises the possibility of the need to respond to submerged oil. NUKA research, on behalf of the Haisla Nation, opined that “submission documents overall still grossly underestimate the potential for sunken or submerged oil, particularly for pipeline spills to rivers.” EnviroEmerg Consulting, for the Living Oceans Society summarizes well the uncertainty that remains with respect to the behaviour of oil:

There are no definitive statements in the [Environmental Impact Statement] EIS to explain if bitumen diluted with condensate will emulsify, sink or do both if spilled. The supporting technical data analysis in the EIS is based on laboratory tests. There are no in-situ field tests, empirical studies, nor real incidents to validate these findings. This raises significant uncertainty that current spill response technologies and equipment designed for conventional oil can track and recover the diluted bitumen in temperate marine waters. In essence, the assumption that the diluted bitumen can be recovered on-water has yet to be tested.

In short, what dilbit will do when it enters water remains unclear. NG recognizes this lack of clarity itself. As was stated by one of its witnesses, “it’s extremely difficult to predict the behaviour of this product”.

NG admits that additional research needs to be done with respect to understanding how dilbit behaviour.

The provincial argument concludes:

The Province has serious concerns about the lack of clarity and certainty about what dilbit will do if it were to enter the water, the preliminary and indeed contradictory nature of the evidence with respect to NG’s remediation strategies and actions to address sunken oil, and the fact that its proposed tactics have not been evaluated for use in British Columbia. These factors, taken together, suggest that, at least as of today, NG is not yet prepared to deal with sunken oil in the event there were a spill of dilbit into a British Columbia watercourse. By itself this is a cause for serious concern in relation to the fundamental question in this proceeding, namely whether the JRP should recommend approval of this project. But at the very least, this means that a strong condition must be imposed requiring further research on the behaviour of dilbit.

Spill response only preliminary “All roads are driveable”

The provincial argument says, in italics, that the Northern Gateway’s spill response plans are “only preliminary” and adds Northern Gateway’s plan to provide detail operational plans six months before the beginning of the pipeline operations is not good enough. “It is not possible for NG to assert, nor for the JRP to conclude, that NG will be able to access all those places where a spill may travel, and to respond effectively.”

Despite the challenges to responding to a spill from the pipeline, including the challenge of responding to submerged and sunken oil, NG’s plans for responding to a spill have not yet been developed. NG has committed only to providing its detailed oil spill response plans to the National Energy Board 6 months in advance of operations. In the context of this project, the Province remains very concerned that NG has not yet demonstrated its ability to respond effectively to spills from the pipeline.

When specifically asked “In the absence of that planning…to address the challenges that we’ve been discussing, how is it we are to be confident that Northern Gateway will, in fact, be able to effectively respond to a spill?” NG replied that “There is a lot of work that needs to be done.”

Of particular concern, despite its admission that a spill into a watercourse in a remote location would pose a significant challenge, NG has not yet determined those locations it could access to respond to a spill, including the control points utilized for capturing and recovering oil passing that location. Such access will only be determined, if possible, during detailed planning. At this time, NG also does not know what portion of water bodies would be boat-accessible in the event of a spill. The 2010 Michigan spill, which was the subject of much questioning during the hearing, occurred in a populated area, where there were many potential access locations. This will of course not be the case if a spill were to occur in a remote river in British Columbia.

While NG has prepared a document showing some possible control points that might be used for spill response in the event of a spill in some rivers, NG concedes that its work in this regard is preliminary, and only pertains to some of the control points that would ultimately have to be established. NG helpfully provided additional information to that which was originally filed with respect to the travel distance between pump stations or the terminal and certain potential control points. However, travel times to the control points that have been identified do not take into account mobilization time, and assumes all roads are drivable.

Given the incompleteness of NG’s evidence in this regard, the Province submits that NG cannot currently assert that there would in fact be viable control points where a spill could travel to. In addition, even if accessibility to control points had been fully validated, in order for NG to assert that it could respond effectively to a spill, it would also have to know the means by which personnel and equipment would gain access to respond to oil that had come ashore or sunken to the sediment. Given the preliminary nature of the evidence presented by NG, this is of course not known.

The Province is very concerned that, in the event of a spill, some places where a spill could reach will be inaccessible, and therefore not amenable to spill recovery actions. While NG states that it will be able to access control points at any location along the pipeline, it has simply not provided the evidence in this proceeding to substantiate this assertion. The Province submits that, as of today, it is not possible for NG to assert, nor for the JRP to conclude, that NG will be able to access all those places where a spill may travel, and to respond effectively.

In addition to access, there are a number of other challenges to operating in British
Columbia in respect of which NG has completed only very preliminary work.

• The pipeline could be covered by heavy snow at different times of the year; NG states that it will have to review alternative methods of access to deal with this, but has presented no specific evidence on how this challenge will be addressed.
• NG has not yet developed specific plans about how it would deal with oil recovered from a spill, and has not yet determined disposal locations.
• NG has not yet determined the location or the contents of the equipment caches to be used to respond to spills.
• It has not determined year-round access to the pipeline, which will be evaluated as part of detailed planning.

Kitimat River response

The province takes a harsh look at Northern Gateway’s plan for a response on the Upper Kitimat River and Hunter Creek.

Similarly, the Province is concerned about the ability of NG to respond to a spill in the Upper Kitimat Valley. When asked by the Douglas Channel Watch

“…in the context of the Upper Kitimat Valley, does this mean because of the steepness of the terrain and limited road access to the river, that containment at some locations at the source will be impossible, and the majority of your efforts will be at the first accessible locations downstream?”

NG was only able to reply that:

“again it depends on the specific conditions. But as Dr. Taylor indicated, in the development of the response plans we would need to look at various scenarios, various times of year, develop plans so that it would identify the appropriate response locations at those times.”

NG’s targeted spill response time of 6-12 hours needs to be set against the reality that, in the case of a watercourse spill, oil may travel many kilometres downstream while NG is still mobilizing. In this proceeding NG has provided considerable information with respect to how far and fast oil can travel in a watercourse. For example, with a spill into Hunter Creek, NG has stated:

Based on water velocities, a release at this location could reach the Kitimat River estuary 60 km downstream within four to ten hours, depending on river discharge.

Dr. Horn has indicated that these figures are very conservative, and that the actual times to reach Kitimat would be a longer period. However, no other definitive evidence on these times was presented by NG.

Enbridge doesn’t learn from its mistakes

The provincial argument then goes on to say, again in italics, Enbridge does not follow procedures or learn from mistakes and concludes “while NG asserts that its spill detection systems will be world-class, it has not yet chosen to adopt spill detection technologies that would achieve that objective.”

The provincial argument goes over Enbridge’s spill record in detail, including the Marshall, Michigan spill which was harshly criticized by the US National Transportation Safety Board.

Concerns about NG’s inability to respond to a spill are magnified by Enbridge’s conduct with respect to the spill which took place in Michigan. NG concedes that, in that case, there were procedures in place that were not followed. NG asserts that it now has in place a number of “golden rules”, including that whenever there is a doubt with respect to whether the spill detection system has detected a leak, the pipeline must be shut down. However, NG concedes that this rule was in place before the Michigan spill; it self-evidently was not followed. In fact, the rule under which Enbridge would shut down its pipeline system within 10 minutes of an abnormal occurrence which could be immediately analyzed was put into place following a spill in 1991. At that time, similar commitments were made indicating that procedures would change and that a spill of that nature wouldn’t take place again….

despite the fact that the relevant technologies had been in existence for some
10 years, and despite the existence of crack-related failures that led to the development of such technologies, Enbridge had failed to put in place a program that would have detected the Marshall spill

The province wraps up the response saying by telling the JRP:

In short, if NG is relying on its ability to respond effectively to a spill for a positive recommendation from the JRP, then it must show that it will in fact have that ability. The Province submits that NG has not shown that ability in this proceeding.

The Province submits that requiring NG to show now that it will in fact have the ability to respond effectively to a spill is particularly important because there will be no subsequent public process in which that ability can be probed and tested. NG has pointed out that its oil spill response plans will be provided to the NEB for review, and has committed to a third party audit of its plans. However, it also acknowledges that there will be no means by which those plans could be tested through a public process.

On the pipeline project, BC concludes

The Province submits that the evidence on the record does not support NG’s contention that it will have a world-class spill response capability in place. The challenges posed by the pipeline route, the nature of the product being shipped, the conceptual nature of its plans to date and Enbridge’s track record mean that the Province is not able to support the project’s approval at this time. The Province submits that its concerns in this regard should be seriously considered by the JRP as it considers the recommendation it will be making to the federal government.

PART FOUR: State Department assessment of the railway to Rupert route for bitumen

Here are edited portions of the EIS assessment for a major oil terminal at Prince Rupert

Environmental Setting

The EIS says “the local surface geology at the Prince Rupert site consists of bedrock (granitic rocks) overlain by glacial outwash and a thin soil cover.” and goes on to note that “Prince Rupert is located along the coastal region of Canada, which is seismically active.”

Potential Impacts

At Prince Rupert, depth to bedrock is expected to be relatively shallow, so rock ripping and some blasting could be necessary. The impacts of rock ripping and blasting are limited to the immediate area and would not result in any significant impacts to the underlying or nearby geology. Excavation activities, erosion of fossil beds exposed due to grading, and unauthorized collection can damage or destroy paleontological resources during construction.

(The report notes that The potential for finding paleontological resources in the areas that would be disturbed is unknown. But the area of the coast has been heavily metamorphisized and most fossils, so far, have been found further inland, largely along the Copper River near Terrace)

In terms of geologic hazards, the Prince Rupert terminals would be located along the coastal region of Canada, which is seismically active. In addition, the presence of steep slopes increases the risk of landslides and the port’s coastal location increases the risk of flooding…. The Prince Rupert rail terminals and port facilities would be designed to withstand potential seismic hazards and flooding…

Construction of the proposed terminals and port expansion in Prince Rupert would result in the disturbance of approximately 3,500 acres (1,400 hectares) of land for the construction of the rail terminal complex and approximately 1,200 acres (487 hectares) for the expansion of the port. Potential impacts to the soils resources of the area could result from vegetation clearance, landscape grading, and recontouring to ensure proper drainage, the installation of storm water drainage systems, construction of the required infrastructure, and other construction activities.
One of the primary concerns during construction activities is soil erosion and sedimentation.
Potential impacts to soils from erosion are expected to occur in areas where the slopes are greater than 20 per cent and where the erosion potential due to their nature is high. Based on available landscape and soils information, the soils found in the area are not highly erodible and the required infrastructure would be located in areas that are relatively flat. Therefore, the impact of the proposed terminal complex and port construction activities on soil erosion would be minor.

 

Groundwater
Environmental Setting

The Prince Rupert Terminals and port expansion would occur in British Columbia on Kaien Island, which receives about 102 inches of rainfall per year. The terminals would be located on an inlet that is part of the eastern Pacific Ocean on the Venn Passage near the much larger Inland Passage, which extends from Washington State to Alaska along the islands and mainland of British Columbia, Canada. Venn and Inland Passages are marine (salt water) waterbodies. The islands consist of bedrock (granitic rocks) overlain by glacial outwash and a thin soil cover.
Groundwater is shallow, poor quality, and unused. Drinking water is derived from lakes on the mainland. Water quality in the terminal complex area is seawater and inland brackish.

Potential Impacts

During construction of the facilities at Prince Rupert, the primary potential impacts to groundwater would be spills or leaks from construction equipment. Mitigation for these impacts includes having in place appropriate plans in place and appropriate cleanup materials available.
During operations of the facilities at Prince Rupert, the primary potential impacts to groundwater would again most likely be spills or leaks from operation equipment or associated with crude oil unloading of railcars. Although the initial impacts of potential releases or spills may be contained or limited to soil, potential impacts to groundwater may occur depending on the depth to groundwater, soil characteristics (e.g., porosity, permeability), spill volume and extent, and whether the spill reaches surface water bodies, some of which are interconnected to groundwater.

Surface Water
Environmental Setting

The upland character surrounding the potential Prince Rupert terminal area is dominated by bog forest uplands and the flowing surface water bodies are predominantly precipitation- and shallow groundwater-fed intermittent streams. Some open waterbodies are present in the southeast portion of Kaien Island. Tidal shore zones are of a rugged and rocky nature and receive wave energy generated by naturally occurring fetch and large wakes from marine traffic. Winter winds are strong and from the southeast to southwest, with surface currents predominantly northward from the Hecate Strait. Lighter summer winds have less influence on currents and allow freshwater runoff from land and deep water tidal effects to exert more control and provide variation in summer current patterns. Significant wind and tidal mixing tend to occur where waters are shallow and around islands and rocky points of land. The coastal landscape is predominantly fjords carved into the granitic Coast Mountains, created by the last of several glacial periods approximately 12,000 years ago. Shores tend to be rocky and steep with beaches restricted to sheltered areas adjacent to estuaries and the navigable straits and channels provide a wide variety of exposures and habitats.

Potential Impacts

Construction of the facilities at Prince Rupert would disturb approximately 4,700 acres. The primary potential impacts to surface waters include erosion and sedimentation and spills/leaks of hazardous materials. Mitigation for these impacts includes having in place appropriate SPCC plans in place and appropriate cleanup materials available.
During operations, the primary potential impacts to surface waters include storm water runoff, spills, or leaks from operation equipment or associated with crude oil unloading of railcars.
Provision of storm water management measures would mitigate the impacts of stormwater runoff.

Terrestrial Vegetation
Environmental Setting

The Prince Rupert terminals and port facilities would be located in the Coastal Gap Level III Ecoregion. The vegetation immediately adjacent to the Pacific Ocean includes stunted, opengrowing western red cedar, yellow cedar, and western hemlock with some stunted shore pine and Sitka spruce . There are also open areas present within the affected areas. It is unclear if biologically unique landscapes or vegetation communities of concern exist within the proposed Prince Rupert terminal complex boundary.

Potential Impacts

The proposed rail terminal complex and port facilities at Prince Rupert would require the clearing of up to 4,700 acres of natural vegetation, most of which is forested based on aerial photo interpretation. There does not appear to be any biologically unique landscapes or communities of conservation concern within the terminal complex boundary. Nearly all of these impacts would be permanent as natural habitats are converted for use as rail terminals and port facilities.

Wildlife
Environmental Setting

Many wildlife species use this coastal area for hunting, foraging, roosting, breeding, and nesting (Tourism Prince Rupert 2012). Wildlife characteristic of this ecoregion include grizzly bear (Ursus arctos horribilis), black bear (Ursus americanus), mountain goat (Oreamnos americanus), black-tailed deer (Odocoileus hemionus
columbianus), wolf (Canis lupus), moose (Alces alces), mink (Mustela sp.), bald eagle
(Haliaeetus leucocephalus), seabirds, shorebirds, waterfowl, and grouse (Tetraoninae)
The Prince Rupert terminal complex would be located in the Northern Pacific Rainforest(Region 5) bird conservation region, which is an ecologically distinct region in North America…

The coast of the Northern Pacific Rainforest is characterized by river deltas
and pockets of estuarine and freshwater wetlands set within steep, rocky shorelines. These wetlands provide critical nesting, wintering, and migration habitat for internationally significant populations of waterfowl and other wetland-dependent species. The area includes major stopover sites for migrating shorebirds, especially western sandpipers (Calidris mauri) and dunlins (Calidris alpina). Black oystercatchers (Haematopus bachmani), rock sandpipers (Calidris
ptilocnemis), black turnstones (Arenaria melanocephala), and surfbirds (Aphriza virgata) are common wintering species. Nearshore marine areas support many nesting and wintering sea ducks. Many seabirds breed on offshore islands, including important populations of ancient murrelet (Synthliboramphus antiquus), rhinoceros auklet (Cerorhinca monocerata), tufted puffin (Fratercula cirrhata), common murre (Uria aalge), western gull (Larus occidentalis), glaucouswinged gull (Larus glaucescens), and Leach’s storm-petrel (Oceanodroma leucorhoa). Pelagic
waters provide habitat for large numbers of shearwaters (Calonectris spp. and Puffinus spp.), storm-petrels (Hydrobatidae), and black-footed albatross (Phoebastria nigripes)

Potential Impacts

Direct impacts could occur due to vegetation removal or conversion, obstructions to movement patterns, or the removal of native habitats that may be used for foraging, nesting, roosting, or other wildlife uses (Barber et al. 2010). Indirect impacts to wildlife are difficult to quantify and are dependent on the sensitivity of the species, individual, type and timing of activity, physical parameters (e.g., cover, climate, and topography), and seasonal use patterns of the species (Berger 2004). Most of these impacts would be essentially permanent.

Fisheries
Environmental Setting

Prince Rupert is an important deepwater port and transportation hub of the northern coast of British Columbia. It is located on the northwest shore of Kaien Island, which is connected to the mainland by a short bridge. The town of Prince Rupert is just north of the mouth of the Skeena River, a major salmon-producing river. Key commercial fisheries include Pacific salmon, halibut, herring, and groundfish, which are processed from Prince Rupert.

Prince Rupert area supports a high density of streams and rivers that host an array of valuable recreational fisheries for salmon, steelhead (anadromous rainbow trout), rainbow trout, lake trout, cutthroat trout, char, Arctic grayling, and northern pike .

Potential Impacts

New impacts to commercial and recreational fisheries’ habitats from the construction and operation of the facilities in Prince Rupert could include marine intertidal zones as well as fish spawning zones (e.g., herring), if present. There would likely be short-term impacts to the benthic (bottom dwelling) community during construction of the berths and mooring facilities. Bottom-dwelling
fish (i.e., halibut, flounder, and rockfish) and marine invertebrates (i.e., clams, mussels, crabs, and other bivalves and crustaceans) could potentially be impacted during construction as well, but these affects are expected to be minor and temporary or short-term in duration.

Additional shipping traffic would increase underwater sound because large vessels, including tankers, put out relatively high noise levels. Fish and other aquatic organisms (including invertebrates and marine mammals) use sound as a means of communication and detection within the marine acoustic environment. Increased shipping traffic could mask natural sounds by increasing the ambient noise environment from Prince Rupert Harbor and along the marine route to the Gulf Coast area. Long-lasting sounds, such as those caused by continuous ship operation, can cause a general increase in background noise and there is a risk that such sounds, while not causing immediate injury, could mask biologically important sounds, cause hearing loss in affected organisms, and/or have an impact on stress levels and on the immune systems of aquatic species.

Exotic and invasive species are sometimes transferred in the ballast water of tanker ships.
Monitoring and controls would need to be implemented to treat ballast water discharged into Prince Rupert Harbor such that invasive or exotic species would not be released into the marine environment.

Threatened and Endangered Species

This section focuses on animal and plant species present in the Prince Rupert area that are Canada SARA protected. As a coastal area along the Pacific Migratory Bird Route, and an area that receives a lot of precipitation and is heavily forested, many wildlife species inhabit the area, as discussed in Section 5.1.3.6, Wildlife. According to the British Columbia (B.C.) Conservation Data Centre (2012), only one SARA threatened/endangered species is known to occur in Prince Rupert—the green sturgeon (Acipenser medirostris), a Pacific Ocean inhabitant. In addition, several SARA special concern species occur in Prince Rupert, including western toad (Anaxyrus boreas), coastal tailed frog (Ascaphus truei), North American racer (Coluber constrictor), grey whale (Eschrichtius robustus), and Stellar sea lion (Eumetopias jubatus)

Potential Impacts

The green sturgeon is typically found along nearshore marine waters, but is also commonly observed in bays and estuaries. The expansion of the proposed port facility could have minor adverse effects on the green sturgeon, but the sturgeon could readily avoid the port area.
Increased shipping traffic at Prince Rupert and as the vessels transit to the Gulf Coast area refineries may affect the feeding success of marine mammals (including threatened and endangered species) through disturbance, because the noise generated by tankers could reduce the effectiveness of echolocation used by marine mammals to forage for food. Whales use underwater vocalizations to communicate between individuals while hunting and while engaged in other behaviors. Increased underwater noise from additional shipping traffic could disrupt these vocalizations and alter the behavior of pods of whales. Moreover, additional boat and
tanker traffic could also increase the potential for collisions between marine mammals and shipping vessels. These effects would be additive in nature and could potentially add to existing disturbance effects and collision risks caused by the current level of shipping traffic, commercial and recreational fishing, and cruise ship passage.

Land Use, Recreation, and Visual Resources
Environmental Setting

Land use, recreation, and visual resources for the Prince Rupert area where the new terminals and expanded port facilities would be built differ sharply from the other terminal sites. Prince Rupert is located on an inlet of the Pacific Ocean in a heavily forested area of British Columbia.
Urban land use is generally limited to the communities in and around the city of Prince Rupert, with some small outlying communities and villages in the area. Given Prince Rupert’s role as a terminus of the Alaska Ferry System, many people see the port and surrounding areas in a recreational context. The area is largely undeveloped and would be sensitive to changes in the visual landscape.

Potential Impacts

If constructed on previously undeveloped land, the new facilities would primarily impact mixed forest… The construction and operational impacts on land use, recreation, and visual resources at the Lloydminster, Epping, and Stroud terminal complex sites and along the Cushing pipeline route would be the same as for the Rail/Pipeline Scenario.

Socioeconomics
Environmental Setting

Population/Housing

Construction and operations activities are not expected to have a significant effect on population and housing for this scenario. Because construction and operations job estimates have not yet been determined for this scenario, worker requirements for Prince Rupert, Lloydminster, and Epping are assumed to be minor..additional temporary housing could be needed in Prince Rupert… Prince Rupert only has about 740 hotel/motel rooms

Local Economic Activity

Tanker infrastructure and operations would be affected as ships transport crude oil from Prince Rupert through the Panama Canal to Texas ports near Houston.

Direct construction expenditures for facilities at Prince Rupert would be approximately $700 million, with approximately 1,400 annual construction jobs, based on the cost estimates of the proposed Enbridge Northern Gateway marine terminal in Kitimat

Despite the large population of First Nations people in the Prince Rupert area, Canada does not have a similar definition to minorities as the Keystone report applied under US law and so it notes “Impacts to minority and low-income populations during construction and would be similar to those described for the proposed [Keystone] Project and could possibly result in increased competition for medical or health services in underserved populations. Canada does not define HPSA and MUA/P, so it is unknown whether or not the minority populations in Prince Rupert or Lloydminster exist in a medically underserved area.

Tax Revenues and Property Values

It says construction of a new terminal Prince Rupert would generate provincial sales taxes, goods and services taxes, and hotel taxes. Construction of the tank and marine terminals at Prince Rupert…would involve large numbers of road trips by heavy trucks to transport construction materials and equipment to and from the sites. Construction in Prince Rupert could also potentially involve vessel deliveries of material. This traffic could cause congestion on major roadways, and would likely require temporary traffic management solutions such as police escorts for oversize vehicles.

Cultural Resources

Despite the rich heritage of First Nations in the Prince Rupert area, the Keystone alternative study reported;

No cultural resources studies have been conducted for the Prince Rupert area. Review of aerial photographs shows that a small portion of the area that could potentially be developed has already been disturbed by development, including port facilities, structures, and roads. This preliminary review shows that most of the area appears undeveloped and would have the potential for intact buried cultural resources.

The report notes that “Any ground disturbance, especially of previously undisturbed ground, could potentially directly impact cultural resources.”

It goes on to note that the potential to

include intact buried cultural resources would require evaluation through research and cultural resources surveys. If cultural resources were identified, follow-up studies could be required. In general terms, the archaeological potential of heavily disturbed areas, such as might be found in active rail yards or within developed transportation corridors, is normally lower than in undisturbed areas.

Archaeological potential is also contingent upon factors such as access to water, soil type, and topography, and would have to be evaluated for each area to be disturbed. Aboveground facilities have the potential to indirectly impact cultural resources from which they may be visible or audible. The potential for increased rail traffic to contribute to indirect impacts would require consideration.

Air and Noise

The report also summarizes the possible green house gas emissions for the rail and tanker project as whole from Prince Rupert to the Gulf Coast refineres and notes that overall

On an aggregate basis, criteria pollutant emissions, direct and indirect GHG emissions, and noise levels during the operation phase for this scenario would be significantly higher than that of the proposed [Keystone XL] Project mainly due to the increased regular operation of railcars, tankers, and new rail and marine terminals.

Air Quality

The rail cars and tankers transporting the crudes would consume large amounts of diesel fuel and fuel oil each day….The criteria pollutant emissions would
vary by transportation segment, particularly during marine-based transit. Oil tankers traveling from the Prince Rupert marine terminal through the Panama Canal to Houston/Port Arthur pass through several different operational zones, including reduced speed zones leading into and out of the ports, North American Emission Control Areas where the use of low-sulfur marine fuel is mandated, and offshore areas where the tankers travel at cruise speeds.

During the return trip, tankers are filled with seawater (ballast) to achieve buoyancy necessary for proper operation, which affects the transit speeds of the vessel. Furthermore, the tankers spend several days loading or unloading cargo at each marine terminal with auxiliary engines running (an activity called hoteling). The tanker emissions accounted for return trips (i.e., both loaded cargo going south and unloaded cargo going north).

In aggregate, the total operational emissions (tons) estimated over the life of the project (50 years) are several times greater than those associated with the combined construction and operation of the proposed Keyston XL Project

Greenhouse Gases

Direct emissions of GHGs would occur during the construction and operation of the Rail/Tanker Scenario. GHGs would be emitted during the construction phase from several sources or activities, such as clearing and open burning of vegetation during site preparation, operation of on-road vehicles transporting construction materials, and operation of construction equipment for the new pipeline, rail segments, multiple rail and marine terminals, and fuel storage tanks.

Due to limited activity data, GHG emissions from construction of the Rail/Tanker Scenario were not quantified; however, these emissions would occur over a short-term and temporary period, so construction GHG impacts are expected to be comparable to the proposed [Keystone XL] Project.
During operation of the railcars and tankers that comprise this scenario, GHGs would be emitted directly from the combustion of diesel fuel in railcars traveling over 4,800 miles (7,725 km) and fuel oil in marine tankers traveling over 13,600 miles (21,887 km) round-trip.

The Rail/Tanker Scenario would also result in indirect emissions of GHGs due to the operation of 16 new rail terminals, an expanded port, and potential pumping stations. The new rail terminal in Prince Rupert would be projected to require 5 MW of electric power to operate, possibly bring indirect GHG emissions

Noise

Noise would be generated during the construction and operation of the Rail/Tanker Scenario. Noise would be generated during the construction phase from the use of heavy construction equipment and vehicles for the new pipeline, rail segments, and multiple rail and marine terminals, and fuel storage tanks. Due to limited activity/design data, noise levels from the construction of this scenario were not quantified; however, this noise would occur over a short term and temporary period, so construction noise impacts are expected to be comparable to those
of the proposed Project. During operation of the railcars and tanker ships that comprise this scenario, noise would be generated from the locomotives, movement of freight cars and wheels making contact with the rails as the train passes, train horns, warning bells (crossing signals) at street crossings, and tanker engines during hoteling and maneuverings at the new rail and marine terminals in Prince Rupert.

(Noise from ocean going vessels which is a concern for coastal First Nations and environmental groups is covered later on impact on wildlife)

 

Climate Change Effects on the Scenario
Environmental Setting

The Keystone study looks at the affects of climate change, but concentrates largely on the Gulf Coast beause the most of the Rail/Tanker Scenario was outside of the boundaries of the study, but it does note that the sea levels are projected to rise due to glacial melting and thermal expansion of the water. The rate, total increase, and likelihood of the rise is in part dependent on how rapid the ice sheets warm and is a source of ongoing scientific uncertainty.

The United States Global Change Research Program (USGCRP) estimates that sea level rise could be between 3 to 4 feet by the end of the century.

Increasing sea level projected due to climate changes as described above shifts the impact of mean high tide, storm surge, and saltwater intrusion to occur further inland and this would negatively affect reliable operation of the port infrastrucure for tanker traffic. Mitigation of these climate effects could be addressed by making engineering and operational changes at the port.

Potential Risk and Safety
Environmental Setting

The Rail/Tanker Option would combine the risk inherent in both pipeline and oil tanker
transport. However, the risks and consequences for using oil tankers to transport the hazardous materials are potentially greater than the proposed Project. Overall, crude oil transportation via oil tankers has historically had a higher safety incident rate than pipelines for fire/explosion, injuries, and deaths.

Spills have been reported while the vessel is loading, unloading, bunkering, or engaged in other operations

The main causes of oil tanker spills are the following:
• Collisions: impact of the vessel with objects at sea, including other vessels (allision);
• Equipment failure: vessel system component fault or malfunction that originated the release of crude oil;
• Fires and explosions: combustion of the flammable cargo transported onboard;
• Groundings: running ashore of the vessel; and
• Hull failures: loss of mechanical integrity of the external shell of the vessel.

From 1970 to 2011, historical data shows that collisions and groundings were the maincauses of oil tanker spills worldwide.

Potential Impacts

Loading and unloading of the railcars at tank farms near seaports could allow spills to migrate and impact seawaters and shorelines.

However, the loading and unloading are generally carried out under supervision and would be addressed promptly by the operators, limiting the potential migration and impacts of the spill to the immediate area.

Once the tanker is loaded and at sea, the propagation and impacts of a spill could become significant. Oil tankers may carry up to 2,000,000 bbl of oil

A release of oil at sea would be influenced by wind, waves, and current. Depending on the volume of the release, the spreading of oil on the surface could impact many square miles of ocean and oil birds, fish, whales, and other mammals and could eventually impact shorelines. Oil would also mix with particulates in sea water and degrade. As this occurs some oil will begin to sink and either be retained in the water column (pelagic) or settle to the ocean floor (sessile).

Pelagic oil could be consumed by fish or oil fauna passing though the submerged oil. Sessile oil could mix with bottom sediment and potentially consumed by bottom feeding fauna. Spills in ports-of-call could affect receptors similar to an open ocean release but also could temporarily affect vessel traffic and close ports for cleanup activities.

The identification of key receptors along the rail route alternative was not available for this evaluation. Therefore a comparison to the proposed project was not completed.

Surface Water

The Lloydminster to Prince Rupert portion of this route would begin in the western plains at the Saskatchewan/British Columbia border and travel west through an area of high-relief mountains with large valleys, referred to as the Cordillera region. From a water resource perspective, the plains region of Canada is characterized by relatively large rivers with low gradients. The plains rivers drain the Rocky Mountains to the Arctic Ocean. The Cordillera region is largely composed of northwest-southwest trending mountain ranges that intercept large volumes of Pacific
moisture traveling from the west towards the east. River systems in this region are supplied by a combination of seasonal rainfall, permanent snowfields, and glaciers.

The following are larger rivers crossed by the existing rail lines between Lloydminster and Prince Rupert:

• North Saskatchewan River, Alberta
• Pembina River, Alberta
• McLeod River, Alberta
• Fraser River, British Columbia
• Nechako River, British Columbia
• Skeena River, British Columbia

Wetlands

Spills within wetlands would most likely be localized, unless they were to occur in open, flowing water conditions such as a river or in the ocean. A crude oil spill in a wetland could affect vegetation, soils, and hydrology. The magnitude of impact would depend on numerous factors including but not limited to the volume of spill, location of spill, wetland type (i.e., tidal versus wet meadow wetland), time of year, and spill response effectiveness. The construction of additional passing lanes to accommodate increased train traffic resulting from this scenario could
result in permanent impacts to wetlands if passing lanes were constructed where wetlands occur.
However, as there is some leeway regarding the exact location of the passing lanes, it is expected that wetlands would be avoided by design.

Fisheries

The Rail/Tanker Scenario railroad route would cross numerous major streams and rivers in Canada, many of which support anadromous fish species such as salmon.

Anadromous species are those that spawn and rear in freshwater but migrate to the ocean at a certain size and age. Pacific salmon are large anadromous fish that support valuable commercial and recreational fisheries. Commercial fisheries for salmon occur in marine water and most recreational fishing for salmon occurs in freshwater. Salmon eggs are vulnerable to the effects of fine sediment deposition because female salmon deposit their eggs in stream bed gravels.

Despite this vulnerability, the overland railway route is not expected to present any new impacts to salmon unless there is a spill into its habitat, although the risk of spills does increase under this scenario due to the increase in the number of trains that would use the route.

Potential new impacts under the Rail/Tanker Scenario on commercially or recreationally significant fisheries along the route would be minor because the railroads that would be used are already built and in operation. However, the risk of an oil spill or release of oil or other materials still exists. The tanker portion of this route scenario is also subject to oil spill risk.

Threatened and Endangered Species

The rail route would cross over the Rocky Mountain region of western Alberta, which is inhabited by species such as the woodland caribou (Rangifer tarandus) (a SARA threatened species) and grizzly bear (a SARA special concern species). This region of British Columbia is home to a number of SARA threatened/endangered species, including the peregrine falcon (Falco peregrinus anatum) (SARA threatened), salish sucker (Catostomus sp.) (SARA endangered), white sturgeon (Acipenser transmontanus) (SARA endangered), caribou (southern mountain population) (SARA threatened), northern goshawk (Accipiter gentilis laingi) (SARA threatened), and Haller’s apple moss (Bartramia halleriana) (SARA threatened).

A number of additional SARA special concern species inhabit the regions of Canada that would be traversed by the Rail/Tanker Scenario, including but not limited to those special concern species expected to occur in the Prince Rupert region, and discussed above (B.C. Conservation Centre 2012).

Northwest Coast Energy News Special report links

What the Keystone Report says about Kitimat and Northern Gateway
What the Keystone Report says about the Kinder Morgan pipeline to Vancouver.
What the Keystone Report says about CN rail carrying crude and bitumen to Prince Rupert.
The State Department Environmental Impact Study of the railway to Prince Rupert scenario.

State Department news release

State Department Index to Supplemental Environmental Impact Study on the Keystone XL pipeline

 

Enbridge files massive river oil spill study with the Joint Review Panel

Kitimat River map from Enbridge study
A Google Earth satellite map of the Kitimat River used as part of Enbridge Northern Gateway’s oil spill modelling study.

Enbridge Northern Gateway today filed a massive 11-volume study with the Joint Review Panel outlining possible scenarios for oil spills along the route including the Kitimat and Morice Rivers in British Columbia.

The study, carried out by three consulting firms, Stantec Consuting and AMEC Environmental & Infrastructure both of Calgary and RPS ASA of Rhode Island, is called “Ecological and Human Health Assessment for Pipeline spills.”

Overall the models created by study appear to be extremely optimistic, especially in light of recent events, such as the damning report on by the US
National Transportation Safety Board and the finding of violations by the US Pipeline and Hazardous Material Safety Administration with Enbridge operations during the 2010 Marshall, Michigan, spill and subsequent cleanup difficulties encountered by Enbridge.

The executive summary of the report begins by saying

This document presents conservatively developed assessments of the acute and chronic risk to ecological and human receptors in the unlikely event of a full bore pipeline break on the proposed Enbridge Northern Gateway Pipeline project. Three representative hydrocarbon types (condensate, synthetic oil
and diluted bitumen) were evaluated with releases occurring to four different rivers representing a range of hydrological and geographic characteristics, under both low-flow and high-flow conditions. The analysis indicates that that the potential environmental effects on ecological and human health from each hydrocarbon release scenario could be adverse and may be significant. However, the probability of the releases as considered in the assessment (i.e., full bore rupture, with no containment or oil recovery) is low, with return periods for high consequence watercourses ranging from 2,200 to 24,000 years. Therefore, the significant adverse environmental effects as described in this report are not likely to occur.

So the study says that it is “conservative” that means optimistic, that a full bore pipelink break with no containment or recovery is “an unlikely event” and would probably occur every 2,200 and 24,000 years. Not bad for a pipeline project that is supposed to be operational for just 50 years.

The summary does caution:

The analysis has also shown that the outcomes are highly variable and are subject to a great many factors including the location of the spill, whether the hydrocarbons are released to land or directly to a watercourse, the size of the watercourse, slope and flow volumes, river bed substrate, the amount of suspended particulate in the water, environmental conditions (such as the time of year, temperature and wind speeds, precipitation, etc.), the types of shoreline soils and vegetative cover and most significantly, the type and volume of hydrocarbon released.

The highly technical study is Enbridge’s official response to those intervenors who have “requested additional ecological and human health risk assessment studies pertaining to pipeline spills” and a request from the Joint Review Panle for more information about “the long term effects of pipeline oil spills on aquatic organisms (including the sensitivity of the early life stages of the various salmon species), wildlife, and human health.”

The report presents modelling on the release of three hydrocarbons, diluted bitumen, synthetic oil and condensate at four river locations along the pipeline route for their potential ecological and human health effects, under two flow regimes (i.e., high and low flow), broadly representing summer and winter conditions.

Modelling was done for four areas:

• Chickadee Creek: a low gradient interior river tributary discharging to a large river system
located up-gradient from a populated centre within the Southern Alberta Uplands region
• Crooked River: a low gradient interior river with wetlands, entering a lake system within
the Interior Plateau Region of British Columbia
• Morice River: a high gradient river system along the western boundary of the Interior
Plateau Region of British Columbia
• Kitimat River near Hunter Creek: a high gradient coastal tributary discharging to a large
watercourse with sensitive fisheries resources, downstream human occupation, and discharging to the Kitimat River estuary

In one way, the study also appears to be a partial victory for the Kitimat group Douglas Channel Watch because the model for the Kitimat River is based on a spill at Hunter Creek, which has been the subject of extensive work by the environmental group, but the consulting study is markedly optimistic compared to the scenario painted by Douglas Channel Watch in its presentations to District of Kitimat council.

The study describes the Kitimat River:

The hypothetical release location near Hunter Creek is southwest of Mount Nimbus, in the upper Kitimat  River watershed, and flows into Kitimat River, then Kitimat Arm, approximately 65 km downstream. The area is in a remote location and maintains high wildlife and fisheries values. The pipeline crossing near Hunter Creek is expected to be a horizontal direction drilling (HDD) crossing. The release scenario
assumes a discharge directly into Kitimat River…

The streambed and banks are composed of coarse gravel, cobbles and boulders. Shoreline vegetation (scattered grasses and shrubs) occurs in the channel along the tops of bars. Vegetation is scattered on the channel banks below the seasonal high water mark and more developed (i.e., grasses, shrubs and trees) bove the seasonal high water mark.

Wildlife and fish values for the Kitimat River are high: it is important for salmon stocks, which also provide important forage for grizzly bears, bald eagles and osprey on the central coast. The Kitimat River estuary, at the north end of Kitimat Arm, also provides year-round habitat for some waterbirds and seasonal habitat for staging waterfowl.

There is considerable recreational fishing, both by local people and through fishing guides, on Kitimat River, its estuary and in Kitimat Arm. There is also likely to be a high amount of non-consumptive recreational activity in the area, including wildlife viewing, hiking and camping. The Kitimat River estuary, for example, is well known for waterbird viewing.

While no fish were captured at this location during the habitat survey, salmonoid fry and coho salmon were observed downstream. Previously recorded fish species in the area include chinook, coho and chum salmon, rainbow trout, Dolly Varden, and steelhead trout.

However, the next paragraph appears to show that a full bore rupture on the Kitimat River would have widespread consequences because it would cover a vast area of First Nations traditional territory, saying

Aboriginal groups with traditional territories within the vicinity of the Kitimat River hypothetical spill scenario site include the Haisla Nation, Kitselas First Nation, Kitsumkalum First Nation, Lax-Kw’alaams First Nation and Metlakatla First Nation.

It also acknowledges:

Oral testimony provided by Gitga’at First Nation and Gitxaala Nation was also reviewed in relation to this hypothetical spill scenario, although the traditional territories of these nations are well-removed from the hypothetical spill site.

The report then goes on to list “the continued importance of traditional resources” for the aboriginal people of northwestern BC.

especially marine resources. People hunt, fish, trap and gather foods and plants throughout the area and traditional foods are central to feasting and ceremonial systems. Food is often distributed to Elders or others in the community. Written evidence and oral testimony reported that Coho, sockeye, pink, and spring salmon remain staples for community members. Halibut, eulachon, herring and herring roe,
various species of cod, shellfish, seaweed, and other marine life are also regularly harvested and consumed, as are terrestrial resources, including moose, deer, beaver, muskrat and marten. Eulachon remains an important trade item. Written evidence provides some information on seasonality of use and modes of preparation. Seaweed is dried, packed and bundled and preserved for later use. Each species of
salmon has its own season and salmon and other fish are prepared by drying, smoking, freezing or canning. Salmon are highly valued and often distributed throughout the community…

Some areas used traditionally are not depicted geographically. Upper Kitimat River from the Wedeene River to the headwaters has long been used for trapping, hunting, fishing and gathering of various foods. Fishing, hunting and gathering activities take place along the lower Kitimat River and its tributaries. Marine resources are collected in Kitimat Arm, Douglas Channel, and Gardner Canal. Old village and
harvesting sites are located along the rivers and ocean channels in this vicinity.

Intertidal areas are important and highly sensitive harvesting sites that support a diversity of species. Many intertidal sites are already over harvested and are therefore vulnerable. Conservation of abalone has been undertaken to help the species recover. Some concern was expressed in oral testimony regarding the
potential for archaeological sites and the lack of site inventory in the area. Oral testimony made reference to the Queen of the North sinking and the potential for a similar accident to result in human health and environmental effects.

A spill at Hunter Creek

The model says that all three types of floating oil in Kitimat River under high-flow conditions would reach approximately 40 kilometres downstream from Hunter Creek while low-flow conditions showed variation.

Under what the study calls low flow conditions, most condensate would evaporate. The bitumen would cause “heavy shore-oiling” for the first 10 kilometres, with some oiling up to 40 kilometres downstream.

The most sedimentation would occur for synthetic oil, and the least for condensate. Synthetic oil under both flow conditions would have the largest amounts deposited to the sediments. This is because of the low viscosity of synthetic oil, which allows it to be readily entrained into the water where it may combine with suspended sediments and subsequently settle. Synthetic oil under high-flow conditions would result in the most entrained oil and so the most extensive deposition to the sediment. Diluted bitumen, for both flow conditions, would result in the most deposited on shorelines, with the remainder (except that which evaporated or degraded) depositing to the sediments.
The condensate also would also have significant entrainment, but higher winds prevailing in under low flow conditions would enhance evaporation and rapidly lower concentrations in the water as compared to high-flow conditions. In all scenarios, a large amount of entrained oil and high concentrations of dissolved aromatics would move down the entire stretch of Kitimat River and into Kitimat River estuary.

Long term scenario

The modelling appears to be extremely optimistic when it reaches four to six weeks after the pipeline breach, especially in light of the continued cleanup efforts in Michigan, estimating that the “fast-flowing” nature of the Kitimat River would disipate all the different forms of hydrocarbon in the study saying

 a fast-flowing coastal river like Kitimat River, with gravel or cobble bottom would be affected by a large volume of crude oil released in a short period of time.

Oiling of shoreline soils is heavy in the reaches between the release point and 10 km downstream, becoming lighter to negligible beyond 10 km. Deposition of hydrocarbons to river sediment is greatest for the synthetic oil and diluted bitumen (high flow) scenarios extending up to 40 kilometres downriver, with predicted hydrocarbon concentrations in sediment approaching 1,000 mg/kg dry weight. Deposition of hydrocarbons to river sediment is considerably lighter for the diluted bitumen (low flow) and condensate scenarios. In these scenarios, oiling of river sediment is negligible….

It says that within four weeks of the end of the acute phase of the spill scenarios, concentrations in river sediments and river water would decline becoming quite low at the end of two years.

As for the affects on plants and invertebrates:

Oiling of shorelines would be extensive, particularly at assessment locations within 10 kilometres of the pipeline break location, under both the high and low flow scenarios, for synthetic oil and condensate. High loadings occur as far as 25 kilometres downstream, again asusming that damage would begin to disipate after four weeks declining over the next one to two years. Predicted effects are generally less severe for the diluted bitumen spill scenarios, due to lower expected loading of oil onto shorelines. Low to negligible shoreline oiling would occur for Kitimat River under most of the scenarios at the 40 kilometres assessment location and points downstream. Based on this assessment, very little oiling of shorelines would extend to the estuary and the environmental effects would be minimal.

The study goes on to say that the “model suggests that there would be no significant risk to fish health based upon chronic exposure to petroleum hydrocarbons  for the oil spill scenarios in Kitimat River or the potentially affected areas within the estuary, either at four weeks or one to two years following the hypothetical spill events. Risk to developing fish eggs in Kitimat River and estuary at four weeks and one to two years again indicate no significant risk to developing fish eggs in spawning gravels.”

It also claims that “chronic risks” to wildlife would be minimal, with some elevated risk for “muskrat, belted kingfisher, mallard duck, spotted sandpiper and tree swallow,” if they were exposed to synthetic oil. The muskrat, mallard duck and spotted sandpiper
could be vulnerable to bitumen and diluted bitumen.

It then claims that “no significant effects of chronic exposure (to all hydrocarbons) would occur for grizzly bear, mink, moose, river otter, bald eagle, Canada goose, herring gull or great blue heron for the Kitimat River hydrocarbon spill scenarios.”

Again, it appears from the sutdy that the spotted sandpiper would be most vulnerable to “bulk weathered crude oil exposure” includingcondensate, diluted bitumen and synthetic oil.

For the Kitimat section it concludes:

In the unlikely event of an oil spill, recovery and mitigation as well as the physical
disturbance of habitat along the watercourse would be likely to substantially reduce the exposure of wildlife receptors to hydrocarbons as compared to the scenarios evaluated here.

Link to Volume One of the Enbridge Northern Gateway Report Ecological and Human Health Assessment for Pipeline Spills

Editorial: Harper wants to cut off funding for JRP intervenors. Conservatives allow hate speech, while curbing green speech.

The Conservative Party of Canada are sickening hypocrites on free speech.

Hate speech is OK. Green speech is not.

Hate speech is permitted, for it is “free speech.”  “Green speech,” on the other hand, is under constant attack from the Conservatives and their followers. While not subject to legal curbs (for now), we are seeing increasing pressure on those who advocate for the environment to shut up.

The Conservatives  today repealed sections of the human rights act concerning “hate speech” delivered by telephone and the Internet.  There was a free vote,  the Conservative MPs supported the repeal by 153 to 136.  It was a private members bill from Alberta Conservative MP Brian Storseth that repealed Section 13 of the human rights code, which covered with complaints regarding “the communication of hate messages by telephone or on the Internet.”

On the same day, in SunMedia, that Prime Minister Stephen Harper says his government will no longer fund any organization that comes before the Northern Gateway Joint Review opposing the pipeline.

According to Sunmedia story Taxpayer Funding Oil-Sands Activitists

The taxpayer tap pouring cash into the coffers of oilsands opponents could be turned off.

“If it’s the case that we’re spending on organizations that are doing things contrary to government policy, I think that is an inappropriate use of taxpayer money and we will look to eliminate it,” said Prime Minister Stephen Harper in Paris on Thursday.

Harper was responding to reports by Sun News Network that the Canadian Environmental Assessment Agency has showered more than $435,000 on groups participating in the review of the Northern Gateway pipeline proposal, that would connect Alberta’s oilsands to a tanker port in northern B.C.

So there we have it, a prime minister who heads a government elected by just 30 per cent of the Canadian electorate, who now decides who can afford to come before a public quasi-judicial body, the Northern Gateway Joint Review Panel. Support the government and the bitumen sands, fine, we’ll give you taxpayers’ dollars, even if you don’t need it. Oppose the government, and you do  it on your own dime.

Transnational energy companies have millions to spend to support their views on the oils sands, whether before the JRP or in a multi-million PR campaign. A poor community that could be devastated by an oil spill off the BC Coast doesn’t count.

In the age of the web, Facebook, Twitter and other social media, all speech is hard to control, as despotic governments around the world are finding.   Hate speech on the Internet is impossible to control.  All someone has to do is  have a server in a country like the United States, where the First Amendment permits it. Green speech will continue to be free on the Internet. The difference is that Conservatives are making every effort to make green speech ineffective in the political and public spheres in Canada.

The change in the Canadian hate law means little in a practical sense. So why did the Conservatives change the law?  Like their efforts to crush “green speech,”  repealing those hate speech clauses has absolutely nothing to do with free speech. The repeal is all about ideological control, the very opposite of free speech.

Behind this vote is the fact that conservatives have made it clear over the years that they despise human rights codes. Today’s act of repeal is nothing more than part the Conservatives  wide-ranging plan to incrementally, millimetre by millimetre, (probably through other private member’s bills) to dismantle all the progress that has been made in this country over the past 70 years.

The right wing media loves to promote the far out wacko cases of people who use the human rights law process, stories the right-wing repeats again and again. There have been wackos who use other legal procedures, including the civil courts and other judicial and quasi-judicial bodies. But the conservatives and their media allies only emphasize the wacko cases before a human rights tribunal.

Of course, the majority of comfortable (and most of whom are, as far as we know, white, male and straight) conservatives are never going to have to use a human rights tribunal to redress a grievance.  They were never beaten up on the school yard, never denied a job or housing.  Most of the people who go before human rights tribunals are on the margins of society.

At the same time, we see the ongoing campaign by conservatives to demonize “green speech,” speaking out for the environment. Conservatives, in politics and the media, are trying to curb the funding of foundations that support the environment, the government routinely calls environmentalists “radicals” and even “terrorists.” Now we have Harper saying, yet again, don’t you dare oppose government policy on the bitumen sands.

The right-wing media routinely heaps their scorn and yes, even hatred, for those who believe that life on this planet is threatened. Those right wing columnists will, of course, fight to death to protect their own free speech but most won’t even put in a single sentence of objection in their columns or reports about the conservative campaign against “green speech.”

Which brings us to the man, who while claiming to be a free speech advocate, is actually now the self-appointed head of Canada’s thought police, Ezra Levant of Ethical Oil. (Ethical Oil today triumphantly tweeted Harper’s statement  @EthicalOil Taxpayers funding anti-oilsands activists #EthicalOil #Cdnpoli… fb.me/V1AS7Tg2 )

Writing in the National Post, Jonathan Kay is full of praise for Levant:

a vigorous network of right-wing bloggers, led by Ezra Levant, began publicizing the worst abuses of human-rights mandarins…. In absolute numbers, the readership of their blogs was small at first. But their existence had the critical function of building up a sense of civil society among anti-speech-code activists, who gradually pulled the mainstream media along with them. In this sense, Mr. Levant deserves to be recognized as one of the most influential activists in modern Canadian history.

Influential activist, yes.  Free speech advocate? No. It is time the media stopped calling Levant a champion of free speech. He is not. Levant is a champion of causes he himself approves of,  especially the bitumen sands.  Free speech for anyone who opposes his agenda is subject at very least to attack and ridicule.

In his columns,  Levant advocated the curbing of the free speech of the thousands of  people of British Columbia who are defending their back yard from the energy industry. Levant is, of course, free to disagree with them, but don’t you dare oppose Ezra Levant or the bitumen sands,

Levant, rather than calling for more free speech in his columns, as his personal PR spin maintains,  advocated cutting off the people who live here in northwestern  British Columbia from the hearings of the Northern Gateway Joint Review panel, by saying too many people had signed up to testify.

Writing in SunMedia on December 10, 2011, Levant let off a broadside at the thousands of ordinary Canadians living and working along the route of the Northern Gateway pipeline who signed up to comment on the project, calling on Stephen Harper to fire chair Sheila Leggett for permitting too many people to speak at the hearings

[A]s of Friday, 4,453 people had typed in their names into Leggett’s website, signing up for the right to make a presentation.

[The JRP] allows anyone in the world — literally any person, any child, any foreign citizen — to simply type their name and address and get the right to testify before her panel.

It’s as trivial as clicking “like” on a Facebook page. That’s why Leggett needs another year. If another 40,000 people click on her website, will she delay things 10 years?

Skimming through the names is like reading petitions where wiseacres sign up as “I. P. Freely” or “John A. Macdonald.” Much of it is just junk, to jam up the system.

The website allows people to write a comment. Many of them are word-for-word replicas of each other. It’s a form letter campaign, arranged by professional environmental lobbyists. And it’s working. The only question is whether Leggett is naive, incompetent or biased against the pipeline.

Some of the forms have been faxed in. They helpfully have the fax signature stamp at the top of the page, showing which foreign-funded lobby group is working to gin up names. Like the Sierra Club, which received a $909,000 contract from the U.S. Tides Foundation and their Canadian affiliate to gin up opposition to the “tar sands.”

Those foreign billionaires are getting their money’s worth — they’ve managed to delay the hearings by a year before they’ve even started.

Levant was giving a completely inaccurate account of the Joint Review process. His column which echoes the ideological blindness of most his conservative columnist colleagues, speaks of foreign influence, repeating the big lie being propagated by the Conservative party,  started largely by blogger Vivian Krause, that there is an International California Conspiracy to undermine the Canadian energy industry.

Dealing with a pipeline coming through some of the most geologically unstable country on the planet is not “trivial.”  The threat of a major oil spill on the British Columbia coast is not “trivial.”

I’ve attended, listened to the remote webcast or read the transcripts of much of the hearings. None–none– of the testimony can remotely be considered: “Much of it is just junk, to jam up the system.”

A fair estimate would say that 95 per cent of people who registered to comment live along the pipeline route or the BC coast. At least a dozen or more letters of comment are posted on the JRP site every day, which means thousands since Levant wrote the diatribe,  and it is clear that they are written by individuals with valid concerns, and none in recent months are form letters. (I check them, I doubt if Levant does)

In that column, Levant goes on about JRP chair Sheila Leggett:

She’s Stephen Harper’s bureaucrat, but she’s taking direction from foreign meddlers. For “whatever time it takes.”

What a fool. No court would permit such a gong show. And Leggett has court-like powers.

Last month, when Barack Obama delayed the Keystone XL pipeline from the oilsands to the U.S., Harper was appalled.

But Leggett was appointed by Harper. And she just pulled an Obama on our own country.

Leggett must be fired. Her job is not to listen to everyone in the world with an Internet connection. It’s to make the best decision in Canada’s interest.

Her Oprah-style hearings are unacceptable, and Harper should make that clear by sacking her.

Leggett was not fired. In fact, over the past six months, she has had a difficult time confining testimony to the narrow rules of evidence that do not permit someone to actually say they oppose the pipeline.  An intervenor had to testify “from personal knowledge” or if First Nations “from traditional knowledge.” So no hearings came close to being “a gong show.”

There hasn’t been a single “foreign meddler” testify in the past six months (although some intervenors, including the energy companies themselves, use experts from outside Canada).

In a later column, on January 7, 2012, the weekend before the hearings began here in Kitimat, Levant again toed the conservative party line in Pipeline review hearings allowing foreign input is ridiculous — we don’t need another country’s permission. It’s all Canada, Levant again repeated his big lie.

Those who testified at the Kitamaat Village hearings in the following days were from the Haisla Nation as well as Douglas Channel Watch and the Kitimat Valley Naturalists (both groups consist of mainly retired Kitimat residents).  There wasn’t a foreign billionaire in sight. Same with the hearings in the days and weeks that followed, First Nations, fishers, hunters, guides, birders, and yes environmental groups. (How dare those BC NIMBYs get in the way of an Alberta pipeline and its manifest destiny?)

In today’s SunMedia article, Environment Canada cautioned:

A spokesman for Environment Minister Peter Kent tells QMI Agency while that funding is often legally required, Kent wants to make sure “common sense prevails” in how it’s awarded.

With its majority, it is likely the Conservatives will change the rules, just as they are by abolishing DFO fisheries protection for salmon spawning streams. Again bottom line, if you support the government and you are rich, you can testify.  If you are poor, even if you are “directly affected,” tough luck.

The sad fact is that Levant has won, for now, his fight against free speech in BC, probably without knowing it.

More and more people are dropping out of the Joint Review Panel process, hearings scheduled for days now last just a day or an afternoon. That’s because given the position of Stephen Harper, Joe Oliver and Peter Kent, that the pipeline is going ahead no matter what, many of these people  who signed up to comment now see no reason to testify for 10 minutes on a subject that is a foregone conclusion. Here in the northwest, where long distance travel is concerned, it takes time and money to make the effort of participate. Why testify, if the government is going to ignore the concerns of the people who live here?

No wonder Ethical Oil sent out the celebratory tweet this afternoon.

The Conservatives have won a major in battle in their war on free speech in this country by making it not worth their while for many ordinary citizens, those who don’t have deep pockets for research and lawyers, to speak on the Northern Gateway Pipeline, at least before the Joint Review Panel. Now Harper government wants to cut off funds for the poorer intervenors.  If that happens, more opponents will drop out of the proceedings.

Kay, in his attack on the hate law calls it a  “system of administrative law that potentially made de facto criminals out of anyone with politically incorrect views about women, gays, or racial and religious minority groups.”

The National Post’s conservative friends (in its own newsroom and both in and out of Parliament)  are now looking for ways to make “defacto criminals out of anyone with the politically incorrect” view that the Northern Gateway Pipeline is not a new version of the “national dream.” After all,  Stephen Harper’s statement today means “that doing things contrary to government policy” is now politically incorrect.

Of course, if the pipeline breaches along the Kitimat River and the town is without a drinking water system for up to four years (in the worst case scenario), it will be Kitimat’s nightmare, not Canada’s. (In Don Mills, columnists will still be able to drink Toronto’s water or, perhaps, run to the corner store for a Perrier.)  If a bitumen tanker hits the rocky coast and sinks in the deep  cold-water fjords, it will largely be BC’s nightmare, and the BC taxpayers’ nightmare, not Edmonton’s or Toronto’s. If a pipeline buried under nine metres of west coast snow in a remote valley has a small–undetectable by computer– breach  in the darkest days of January and  the ongoing oil leak isn’t discovered for weeks or months, by that time it might also be “politically incorrect” for anyone Canada to object. (Of course, people in the region will object and strongly).

The fact is that these small c and large C conservative campaigns  against hate laws in terms of “free speech” are nothing more than the rankest hypocrisy. What most (not all) conservatives want is free speech for their ideas and only those ideas, especially if they want to shout their own hatred of certain groups from the rooftops or on the world wide web, while at the same time, many conservatives have been trying to shut down anyone with opposing views.

To a conservative, the freedom of speech and the freedom of religion that still drives too many numbers of gay teenagers to suicide, is always protected free speech, no matter the body count.

On the hand, to the same conservatives, free speech in Canada doesn’t include protecting the environment of the only planet we live on, especially if a small portion of the funding that speech comes from California. In conservative Canada, free speech belongs to American (that is foreign) oil billionaires like the Koch brothers. To conservatives, free speech does not apply to local BC groups, coalitions of often left-wing environmentalists and  often conservative anglers and hunters, trying to protect wild salmon.

Where’s George Orwell when we need him? In the Canada of Stephen Harper, the National Post and Sunmedia,  homophobic hatred is protected, preserving the planet is not protected.  In Canada in 2012 (or I should I say 1984+), the only acceptable political speech is support for the bitumen sands and the pipeline projects.

And you wonder why the public has such contempt for majority of politicians and most of the media?

Related links:

Editorial: Just asking: why didn’t anyone object to the Americans at the NEB LNG hearings in Kitimat?

Joint Review media analysis Part one: Calgary Herald columnist advocates curbing free speech on the Northern Gateway Pipeline hearings

(Deborah Yedlin of the Calgary Herald was another columnist who advocated limiting the number of people appearing before the Joint Review Panel. Perhaps this is another case of free speech for Albertans, but not people in BC?)

 

DFO report to JRP says Northern Gateway pipeline will cross “high-risk” streams but releases only two examples on Kitimat watershed

A Department of Fisheries and Oceans report filed Wednesday, June 6, 2012, with Joint Review Panel says the department has identified streams on the Northern Gateway Pipeline route that Enbridge identified as “low risk” but which DFO considers “high risk.” However, in the filing, DFO says it can’t release a comprehensive list of the high risk streams, preferring instead to give two examples on the Kitimat River watershed.

The DFO report comes at a time when the Conservative government is about to pass Bill C-38, which will severely cut back DFO’s monitoring of the majority of streams. It appears that the anonymous DFO officials who wrote the report acknowledge that they may soon have much less monitoring power because the report says:

Under the current regulatory regime, DFO will ensure that prior to any regulatory approvals, the appropriate mitigation measures to protect fish and fish habitat will be based on the final risk assessment rating that will be determined by DFO.

Note the phrase “under the current regulatory regime.”

The report also identifies possible threats to humpback whales from tanker traffic.

In the report, DFO notes that Northern Gateway’s “risk management framework” is based on DFO’s own Habitat Risk Management Framework, and DFO, notes “the approach appears to be suitable for most pipeline crossings.”

However, DFO further remarks that it has identified

some examples where crossings of important anadromous fish habitat have received a lower risk rating using Northern Gateway’s framework than DFO would have assigned. In addition, DFO has identified some instances where the proposed crossing method could be reconsidered to better reflect the risk rating.

In bureaucratic language, the Department says “DFO reviews impacts to fish and fish habitat and proposed mitigation measures through the lens of its legislative and policy framework” again a strong hint that the legislative and policy framework is about to change.

It goes on to say:

The appropriate approach to managing risks to fish and fish habitat is based on the risk categorization. For example, where high risks are anticipated DFO may prefer that the Proponent use a method that avoids or reduces the risk such as directional drilling beneath a watercourse to install the pipeline. If low risks are anticipated other methods such as open-cut trenching across the watercourse may be appropriate.

While DFO is “generally satisfied” with Northern Gateway’s proposed approach, it says “DFO has identified some crossings where we may categorize the risk higher than Northern Gateway’s assessment.”

DFO then gives Enbridge the benefit of the doubt because:

Northern Gateway continues to refine the pipeline route and we anticipate that assessment of risk will be an iterative process and, if the project is approved and moves to the regulatory permitting phase, DFO will continue to work with Northern Gateway to determine the appropriate method and mitigation for each watercourse crossing. In DFO’s view, Northern Gateway’s approach is flexible enough to be updated if new information becomes available.

DFO then says it

has not conducted a complete review of all proposed crossings, we are unable to submit a comprehensive list as requested; however, this work will continue and, should the project be approved, our review will continue into the regulatory permitting phase. While there may be differences in opinion regarding the risk categorization for some proposed watercourse crossings, DFO will continue to work with Northern Gateway to determine the appropriate risk rating and level of mitigation required.

Here is where DFO points to current, not future policy, when it says:

DFO is of the view that the risk posed by the project to fish and fish habitat can be managed through appropriate mitigation and compensation measures. Under the current regulatory regime, DFO will ensure that prior to any regulatory approvals, the appropriate mitigation measures to protect fish and fish habitat will be based on the final risk assessment rating that will be determined by DFO.

The report then gives two examples of high risk streams both in the Kitimat River watershed

 

Example 1) Tributary to the Kitimat River, KP 1158.4 (Rev R), Site 1269

Northern Gateway Rating: RMF: Low Risk

DFO Rating: RMF: Medium to High Risk

Rationale: This is a coastal coho salmon spawning stream that is quite short in length. It has several historic culverts in poor repair which are already impacting the reported run of approximately 100 spawning salmon. Works can be completed in the dry as this stream dries up during the summer. DFO is of the opinion that the risk rating is higher than that proposed by Northern Gateway due to the sensitivity of incubating eggs and juveniles of coho salmon to sediment and the importance of riparian vegetation for this type of habitat.

 

Example 2) Tributary to the Kitimat River, KP 1111.795 (Rev R), Site 1207

Northern Gateway Rating: RMF: Medium Low Risk

DFO Rating: RMF: Medium to High Risk

Rationale: In DFO’s view the risk rating for this watercourse is higher than that proposed by Northern Gateway because this stream is high value off-river rearing habitat for juvenile salmon such as coho salmon. This type of fish habitat is vulnerable to effects of sedimentation and loss of riparian vegetation.

 

Humpback Whales

The Joint Review Panel also asked DFO for a comment on the status of the humpback whale, especially in the shipping area in the Confined Channel Assessment Area Between Wright Sound and Caamaño Sound.

DFO responds

Four areas of critical habitat were proposed for humpback whales in coastal British Columbia in the Draft Recovery Strategy released in 2010, including the Confined Channel Assessment Area from Wright Sound to Caamaño Sound. However, humpback whales have recently been re-assessed by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) and were redesignated ‘Special Concern’ but remain ‘Threatened’ under the Species at Risk Act (SARA). A draft recovery strategy for the humpback whale has been prepared.
It is unclear if humpback whales are still protected as a Schedule 1 status species under the SARA and whether a recovery strategy has been finalized.

Fisheries and Oceans Canada Response to the JRPs IR Request  (pdf)